We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (l o ) and liquid disordered (l d ) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the l o domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.The presence of pale cells with no internal content in a blood smear is typically indicative of a disease. These cells are produced by hemolysis and have been named red blood cell (RBC) ghosts based on their appearance under the microscope. RBC ghosts can be prepared artificially [1][2][3] . The first published protocol in 1963 by Dodge, Mitchell and Hanahan describes the extraction of the cell membrane from RBCs through hemolysis and was an essential step in the development of membrane proteomics and lipidomics 4,5 . While there is detailed knowledge of the composition of RBC membranes, information about the molecular organization of these components in the actual membranes is scarce 6 . This is, in particular, a consequence of the lack of suitable experimental techniques. The disordered, patchy and highly dynamic state of biological materials impedes, for instance, the use of high-resolution diffraction techniques as in protein crystallography. To overcome this constraint, we prepared highly oriented stacks of RBC membranes on silicon wafers and studied their molecular properties in-vitro using high resolution X-ray diffraction. The results present evidence for nanometer-sized domains of coiled-coils peptides, as well as liquid ordered (l o ) and liquid disordered (l d ) lipid patches, and give a detailed picture of the molecular organization in these domains.When present in the body, aspirin (acetylsalicylic acid, ASA) and its metabolites interact with the cyclo-oxygenase (COX) pathway. The inhibition of both COX isoforms, COX-1 and COX-2, by higher dose aspirin is believed to lead to analgesic and anti-inflammatory effects, while lower doses, sufficient to inhibit COX-1 activity, lead to anti-platelet activity 7,8 . There is recent evidence that membrane composition and fluidity play an important role in platelet cell function [9][10][11] , possibly related to the formation of rafts 12 .