Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study endeavors to investigate the effectiveness of machine learning-based methodologies in enhancing the performance and reliability of Power Line Communication (PLC) systems. PLC systems constitute a critical component within the domains of energy management, monitoring, and automation. The fundamental objective herein is to contribute significantly to the scholarly discourse by conducting a comprehensive review encompassing research investigations and practical applications documented in the extant literature. The primary motivation underpinning this research is predicated upon the necessity for a meticulous evaluation of machine learning techniques that hold the potential to enhance the efficacy and stability of PLC systems. The deployment of these techniques bears the promise of engendering heightened levels of efficiency across the spectrum of energy management, communication, and automation systems. Within this scholarly quest, the study posits a hypothesis: Machine learning-based methodologies possess the capacity to effect marked improvements in the performance and reliability of PLC systems. Methodological scrutiny is executed through a comprehensive evaluation of diverse machine learning techniques, including, but not limited to, deep learning, support vector machines, and random forests, facilitated by a series of empirical experiments and simulations. Empirical findings resoundingly corroborate the proposition, substantiating a significant enhancement in the operational performance of PLC systems when these machine learning methods are judiciously employed. In summation, this study assumes the role of a catalyst in exploring latent, untapped potential inherent within machine learning-based methodologies, customarily calibrated to resonate within the intricate matrix of PLC systems. The zenith of this rigorous investigation stands poised to illuminate the path toward transformative advancements in the domains of energy management, communication, monitoring, and automation systems. The findings contribute significantly to the academic discourse, offering a compass for future research inquiries and practical applications within this burgeoning and dynamic field. INDEX TERMSPower line communication, error correction codes, machine learning, transmission control protocols, communication protocols, power networks.
This study endeavors to investigate the effectiveness of machine learning-based methodologies in enhancing the performance and reliability of Power Line Communication (PLC) systems. PLC systems constitute a critical component within the domains of energy management, monitoring, and automation. The fundamental objective herein is to contribute significantly to the scholarly discourse by conducting a comprehensive review encompassing research investigations and practical applications documented in the extant literature. The primary motivation underpinning this research is predicated upon the necessity for a meticulous evaluation of machine learning techniques that hold the potential to enhance the efficacy and stability of PLC systems. The deployment of these techniques bears the promise of engendering heightened levels of efficiency across the spectrum of energy management, communication, and automation systems. Within this scholarly quest, the study posits a hypothesis: Machine learning-based methodologies possess the capacity to effect marked improvements in the performance and reliability of PLC systems. Methodological scrutiny is executed through a comprehensive evaluation of diverse machine learning techniques, including, but not limited to, deep learning, support vector machines, and random forests, facilitated by a series of empirical experiments and simulations. Empirical findings resoundingly corroborate the proposition, substantiating a significant enhancement in the operational performance of PLC systems when these machine learning methods are judiciously employed. In summation, this study assumes the role of a catalyst in exploring latent, untapped potential inherent within machine learning-based methodologies, customarily calibrated to resonate within the intricate matrix of PLC systems. The zenith of this rigorous investigation stands poised to illuminate the path toward transformative advancements in the domains of energy management, communication, monitoring, and automation systems. The findings contribute significantly to the academic discourse, offering a compass for future research inquiries and practical applications within this burgeoning and dynamic field. INDEX TERMSPower line communication, error correction codes, machine learning, transmission control protocols, communication protocols, power networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.