2024
DOI: 10.1051/e3sconf/202451101028
|View full text |Cite
|
Sign up to set email alerts
|

Intelligent Control of Electric Vehicle Drives using Swarm Robotics

Kseniia Iurevna Usanova,
A. VInay Kumar,
Mohsin Ikram
et al.

Abstract: This study investigates the incorporation of swarm robotics into the control mechanism of electric vehicles (EVs), introducing an innovative intelligent control framework that utilizes the concepts of decentralized decision-making. The research entails a methodical inquiry that encompasses the design of system architecture, the creation of a model for swarm robotics, the modeling of electric vehicle drive, the integration of swarm robotics with EV control, the development of algorithms for intelligent control,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 38 publications
(23 reference statements)
0
0
0
Order By: Relevance
“…This concise overview facilitates a comprehensive understanding of the diverse applications of AI in swarm robotics, alongside the testing environments and specific methodologies employed across the studies. -√ Large language model (LLM) [21] -√ RL algorithm [5] √ -Dueling Double Deep Q-Network (D3QN) [6] √ -Deep Learning Trained by Genetic Algorithm (DL-GA) [8] √ -3D StringNet herding [10] √ -Decision-making mechanisms [12] √ -Deep Imitation Reinforcement Learning (DIRL) [17] Augmented Lagrangian particle swarm optimization (ALPSO) [20] √ √ Automatic modular design approach (AutoMoDe) [24] Coordination -√ AudioLocNetv(deep learning module) [31] √ -Not specified [32] √ -End-to-end Neural Networks to train robots [27] √ -Mean-field feedback control [28] √ -Deep Neural Network (DNN) model [29] √ -variant of the crawling probabilistic road map motion planning algorithm [33] √ -distributed online reinforcement learning method [34] √ -coordination algorithm [51] Optimization -√ PSO algorithm [53] -√ streamlined algorithms [36] √ -Genetic algorithm (GA) [46] √ -Particle Swarm Optimization (PSO) [49] √ -Robot Bean Optimization Algorithm (RBOA) [50] √ -Automatic modular design method: AutoMoDe-Cedrata and AutoMoDe-Maple [52] √ -PPO algorithm [54] √ -Dijkstra algorithm [55] √ -WC and WET algorithms [44] √ √ Decentralized ergodic planning [35] Optimization and Navigation √ -YOLOv8 [41] √ -Quantum-based path-planning algorithm and Grover's search algorithm [42] √ -Genetic algorithms (GA) and Cellular automata techniques [9] √ -Mean-Field Control (MFC), deep reinforcement learning (RL), and collision avoidance algorithms [22] Optimization and Coordination √ -Knowledge-Based Neural Ordinary Differential Equations (KNODE) [23] √ -Surrogate models ...…”
Section: Internationalmentioning
confidence: 99%
“…This concise overview facilitates a comprehensive understanding of the diverse applications of AI in swarm robotics, alongside the testing environments and specific methodologies employed across the studies. -√ Large language model (LLM) [21] -√ RL algorithm [5] √ -Dueling Double Deep Q-Network (D3QN) [6] √ -Deep Learning Trained by Genetic Algorithm (DL-GA) [8] √ -3D StringNet herding [10] √ -Decision-making mechanisms [12] √ -Deep Imitation Reinforcement Learning (DIRL) [17] Augmented Lagrangian particle swarm optimization (ALPSO) [20] √ √ Automatic modular design approach (AutoMoDe) [24] Coordination -√ AudioLocNetv(deep learning module) [31] √ -Not specified [32] √ -End-to-end Neural Networks to train robots [27] √ -Mean-field feedback control [28] √ -Deep Neural Network (DNN) model [29] √ -variant of the crawling probabilistic road map motion planning algorithm [33] √ -distributed online reinforcement learning method [34] √ -coordination algorithm [51] Optimization -√ PSO algorithm [53] -√ streamlined algorithms [36] √ -Genetic algorithm (GA) [46] √ -Particle Swarm Optimization (PSO) [49] √ -Robot Bean Optimization Algorithm (RBOA) [50] √ -Automatic modular design method: AutoMoDe-Cedrata and AutoMoDe-Maple [52] √ -PPO algorithm [54] √ -Dijkstra algorithm [55] √ -WC and WET algorithms [44] √ √ Decentralized ergodic planning [35] Optimization and Navigation √ -YOLOv8 [41] √ -Quantum-based path-planning algorithm and Grover's search algorithm [42] √ -Genetic algorithms (GA) and Cellular automata techniques [9] √ -Mean-Field Control (MFC), deep reinforcement learning (RL), and collision avoidance algorithms [22] Optimization and Coordination √ -Knowledge-Based Neural Ordinary Differential Equations (KNODE) [23] √ -Surrogate models ...…”
Section: Internationalmentioning
confidence: 99%