1969
DOI: 10.1137/1114028
|View full text |Cite
|
Sign up to set email alerts
|

Integral Limit Theorems Taking Large Deviations Into Account When Cramér’s Condition Does Not Hold. II

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

3
109
0
1

Year Published

2003
2003
2022
2022

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 100 publications
(114 citation statements)
references
References 1 publication
3
109
0
1
Order By: Relevance
“…In Section 3 we prove large deviation results for Minkowski sums S n of iid regularly varying random compact sets. To the best of our knowledge, such results are not available in the literature; they parallel those proved by A. and S. Nagaev [10,11] for sums of iid random variables. The case of general random compact sets is treated in [8].…”
Section: Lemma 1 (I)supporting
confidence: 77%
See 2 more Smart Citations
“…In Section 3 we prove large deviation results for Minkowski sums S n of iid regularly varying random compact sets. To the best of our knowledge, such results are not available in the literature; they parallel those proved by A. and S. Nagaev [10,11] for sums of iid random variables. The case of general random compact sets is treated in [8].…”
Section: Lemma 1 (I)supporting
confidence: 77%
“…for large n. Therefore, (10) says that I 21 = 0 for large n. Furthermore, we have already established in the proof of Theorem 1 that γ n I 22 −→0 as n → ∞ if δ is small enough, relative to τ . The statement of the proposition follows.…”
Section: Remarkmentioning
confidence: 66%
See 1 more Smart Citation
“…In this context, Nagaev [16] has proved that (8) is satisfied as long as N = ρ c L + γ (L)L 1 2λ with γ (L) → ∞ as L → ∞. In view of equations (11) and (12), we may choose the sequence C L = √ L log L in the line following the expression (9), and adapt the arguments presented in the previous section to prove the following theorem.…”
Section: Remarksmentioning
confidence: 95%
“…Ce résultat, qui traite des écarts modérés (i.e. du comportement de S n dans un domaine de taille √ cn log n), a été démontré par Rubin et Sethuraman dans [RuS] (voir aussi [Nag2,Nag3], [Mic] et [Sla]). Cependant comme nous en aurons besoin dans la suite de cet article et que l'argument que nous présentons est très différent de l'argument original et se généralise automatiquement en dimension supérieure, nous choisissons de l'écrire ici.…”
Section: Loi Des éCarts Modérésunclassified