Integrable models and $K$-theoretic pushforward of Grothendieck classes
Kohei Motegi
Abstract:We show that a multiple commutation relation of the Yang-Baxter algebra of integrable lattice models derived by Shigechi and Uchiyama can be used to connect two types of Grothendieck classes by the K-theoretic pushforward from the Grothendieck group of Grassmann bundles to the Grothendieck group of a nonsingular variety. Using the commutation relation, we show that two types of partition functions of an integrable five-vertex model, which can be explicitly described using skew Grothendieck polynomials, and can… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.