Insulin is a hormone that positively regulates anabolism and cell growth, whereas diabetes mellitus is a disease characterized by hyperglycemia associated with impaired insulin action. My colleagues and I have elucidated multifaceted insulin action in various tissues mainly by means of model mice. In the liver, insulin regulates endoplasmic reticulum (ER) stress response during feeding, whereas ER stress 'response failure' contributes to the development of steatohepatitis comorbid with diabetes. Not only the liver but also the proximal tubules of the kidney are important in the regulation of gluconeogenesis, and we revealed that insulin suppresses gluconeogenesis in accordance with absorbed glucose in the latter tissue. In skeletal muscle, another important insulin-targeted tissue, impaired insulin/IGF-1 signaling leads not only to sarcopenia, an aging-related disease of skeletal muscle, but also to osteopenia and shorter longevity. Aging is regulated by adipokines as well, and it should be considered that aging could be accelerated by 'imbalanced adipokines' in patients with a genetic background of progeria. Moreover, we reported the effects of intensive multifactorial intervention on diabetic vascular complications and mortality in patients with type 2 diabetes in a large-scale clinical trial, the J-DOIT3, and the results of subsequent sub-analyses of renal events and fracture events. Various approaches of research enable us of endocrinologists to elucidate the physiology of hormone signaling, the mechanisms underlying the development of endocrine diseases, and the appropriate treatment measures. These approaches also raise fundamental questions, but addressing them in an appropriate manner will surely contribute to the further development of endocrinology.