2016
DOI: 10.4252/wjsc.v8.i2.22
|View full text |Cite
|
Sign up to set email alerts
|

Insights into kidney stem cell development and regeneration using zebrafish

Abstract: Kidney disease is an escalating global health problem, for which the formulation of therapeutic approaches using stem cells has received increasing research attention. The complexity of kidney anatomy and function, which includes the diversity of renal cell types, poses formidable challenges in the identification of methods to generate replacement structures. Recent work using the zebrafish has revealed their high capacity to regenerate the integral working units of the kidney, known as nephrons, following acu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
15
0

Year Published

2016
2016
2024
2024

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 21 publications
(15 citation statements)
references
References 107 publications
0
15
0
Order By: Relevance
“…The zebrafish pronephros is an experimentally tractable system to interrogate the genetic factors that regulate nephrogenesis because of its simple, conserved tubule structure, with two proximal segments and two distal segments (Figure 1A) (Ebarasi et al, 2011; Drummond and Wingert, 2016). The nephrons share a blood filter comprised of podocyte cells (P), followed by a neck (N) segment that transports fluid into the tubule, and finally a pronephric duct (PD) that drains caudally at the cloaca (C), a common exit for the kidney and gut in the embryo (Figure 1A, middle panel).…”
Section: Resultsmentioning
confidence: 99%
“…The zebrafish pronephros is an experimentally tractable system to interrogate the genetic factors that regulate nephrogenesis because of its simple, conserved tubule structure, with two proximal segments and two distal segments (Figure 1A) (Ebarasi et al, 2011; Drummond and Wingert, 2016). The nephrons share a blood filter comprised of podocyte cells (P), followed by a neck (N) segment that transports fluid into the tubule, and finally a pronephric duct (PD) that drains caudally at the cloaca (C), a common exit for the kidney and gut in the embryo (Figure 1A, middle panel).…”
Section: Resultsmentioning
confidence: 99%
“…In lower vertebrates, renal regeneration and structural remodeling occurs in response to injury due to the presence of potent renal progenitors. Interestingly, the presence of these progenitors can result in the formation of new nephrons during adult growth as well as during regeneration, in a process termed neonephrogenesis[4]. In stark contrast, mammals cease the generation of new nephrons at birth or shortly after[9].…”
Section: Fish As a Model To Study Renal Progenitors And Regenerationmentioning
confidence: 99%
“…Each human kidney contains up to 2 million functional units called nephrons that are divided into distinct epithelial segments[3]. Nephrons are organized within an intricate tissue architecture, where they are joined to a centralized collecting duct (CD) network for waste excretion[4]. Due to the complexity of the kidney, the coordination of developmental events that create nephrons and their surrounding interstitial populations from embryonic progenitor cells remains a key question in the biomedical field.…”
Section: Introductionmentioning
confidence: 99%
“…The embryonic kidney is just one essential organ that can be visualized in the zebrafish embryo at 24 hours post fertilization (hpf), known at this stage as the pronephros [26] . The pronephros has a simple anatomy, with two nephron functional units that perform excretory tasks beginning by the 48 hpf stage [27] .…”
Section: Introductionmentioning
confidence: 99%