2012
DOI: 10.1111/j.1469-8137.2012.04128.x
|View full text |Cite
|
Sign up to set email alerts
|

Insight into trade‐off between wood decay and parasitism from the genome of a fungal forest pathogen

Abstract: Summary• Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato.• We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

12
211
5

Year Published

2012
2012
2020
2020

Publication Types

Select...
8
1

Relationship

4
5

Authors

Journals

citations
Cited by 213 publications
(228 citation statements)
references
References 42 publications
(45 reference statements)
12
211
5
Order By: Relevance
“…Despite their huge impact on forestry, horticulture and agriculture, the genetics of the pathogenicity of Armillaria species is poorly understood. The only -omics data published so far have highlighted a substantial repertoire of plant cell wall degrading enzymes (PCWDE) and secreted proteins, among others, in A. mellea and A. solidipes 11,12 , while analyses of the genomes of other pathogenic basidiomycetes (such as Moniliophthora 13,14 , Heterobasidion 15 and Rhizoctonia 16 ) identified genes coding for PCWDEs, secreted and effector proteins or secondary metabolism (SM) as putative pathogenicity factors. However, the lifecycle and unique dispersal strategy of Armillaria prefigure other evolutionary routes to pathogenicity, which, along with other potential genomic factors (such as transposable elements 17 ) are not yet known.…”
mentioning
confidence: 99%
“…Despite their huge impact on forestry, horticulture and agriculture, the genetics of the pathogenicity of Armillaria species is poorly understood. The only -omics data published so far have highlighted a substantial repertoire of plant cell wall degrading enzymes (PCWDE) and secreted proteins, among others, in A. mellea and A. solidipes 11,12 , while analyses of the genomes of other pathogenic basidiomycetes (such as Moniliophthora 13,14 , Heterobasidion 15 and Rhizoctonia 16 ) identified genes coding for PCWDEs, secreted and effector proteins or secondary metabolism (SM) as putative pathogenicity factors. However, the lifecycle and unique dispersal strategy of Armillaria prefigure other evolutionary routes to pathogenicity, which, along with other potential genomic factors (such as transposable elements 17 ) are not yet known.…”
mentioning
confidence: 99%
“…We have selected (a) 14 popular white rot fungal strains – Ceriporiopsis subvermispora B (Fernandez-Fueyo et al 2012), Heterobasidion annosum v2.0 (Olson et al 2012), Fomitiporia mediterranea v1.0 (Floudas et al 2012), Phanerochaete carnosa HHB-10118 (Suzuki et al 2012), Pycnoporus cinnabarinus BRFM 137 (Levasseur et al 2014), Phanerochaete chrysosporium R78 v2.2 (Martinez et al 2004; Ohm et al 2014), Dichomitus squalens LYAD-421 SS1 (Floudas et al 2012), Trametes versicolor v1.0 (Floudas et al 2012), Punctularia strigosozonata v1.0 (Floudas et al 2012), Phlebia brevispora HHB-7030 SS6 (Binder et al 2013), Botrytis cinerea v1.0 (Amselem et al 2011), Pleurotus ostreatus PC15 v2.0 (Riley et al 2014; Alfaro et al 2016; Castanera et al 2016), Stereum hirsutum FP-91666 SS1 v1.0 (Floudas et al 2012), Pleurotus eryngii ATCC90797 (Guillen et al 1992; Camarero et al 1999; Ruiz‐Dueñas et al 1999; Matheny et al 2006); (b) 15 popular brown rot fungal strains – Postia placenta MAD 698-R v1.0 (Martinez et al 2009), Fibroporia radiculosa TFFH 294 (Tang et al 2012), Wolfiporia cocos MD-104 SS10 v1.0 (Floudas et al 2012), Dacryopinax primogenitus DJM 731 SSP1 v1.0 (Floudas et al 2012), Daedalea quercina v1.0 (Nagy et al 2015), Laetiporus sulphureus var v1.0 (Nagy et al 2015), Postia placenta MAD-698-R-SB12 v1.0 (Martinez et al 2009), Neolentinus lepideus v1.0 (Nagy et al 2015), Serpula lacrymans S7.9 v2.0 (Eastwood et al 2011), Calocera cornea v1.0 (Eastwood et al 2011), Gloeophyllum trabeum v1.0 (Floudas et al 2012), Fistulina hepatica v1.0 (Floudas et al 2015), Fomitopsis pinicola FP-58527 SS1 (Floudas et al 2015), Hydnomerulius pinastri v2.0 (Kohler et al 2015) and Coniophora puteana v1.0 (Kohler et al 2015); (c) 13 popular soft rot fungal strains – Trichoderma reesei v 2.0 (Martinez et al 2008), Rhizopus oryzae 99-880 from Broad (Ma et al 2009), Aspergillus wentii v1.0 (De Vries et al 2017), Penicillium chrysogenum Wisconsin 54-1255 (Van Den Berg et al 2008), Daldinia eschscholzii EC12 v1.0, Hypoxylon sp. CI-4A v1.0 (Wu et al 2017), Aspergillus niger ATCC 1015 v4.0 (Andersen et al 2011), Hypoxylon sp.…”
Section: Methodsmentioning
confidence: 99%
“…can be divided into two major clades: the 'spruce clade' includes the Eurasian species Heterobasidion parviporum and the Southern European Heterobasidion abietinum together with the North American Heterobasidion occidentale, whereas the European Heterobasidion annosum and the North American Heterobasidion irregulare form the 'pine clade'. The recently published genome of H. irregulare contains the core components of the RNAi machinery, such as three Dicer-encoding genes and seven Argonaute-encoding genes (Olson et al, 2012;Hu et al, 2013).…”
Section: Introductionmentioning
confidence: 99%