This paper focuses on the exponential stabilization problem for Markov jump neural networks with Time-varying Delays (TDs). Firstly, we provide a new Free-matrix-based Exponential-type Integral Inequality (FMEII) containing the information of attenuation exponent, which is helpful to reduce the conservativeness of stability criteria. To further save control cost, we introduce a sample-based Adaptive Event-triggered Impulsive Control (AEIC) scheme, in which the trigger threshold is adaptively varied with the sampled state. By fully considering the information about sampled state, TDs, and Markov jump parameters, a suitable Lyapunov–Krasovskii functional is constructed. With the virtue of FMEII and AEIC scheme, some novel stabilization criteria are presented in the form of linear matrix inequalities. At last, two numerical examples are given to show the validity of the obtained results.