Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Due to sand production coming from the upper zone of a multizone monobore gas well completion, the well production had to be choked back to a flow rate below the well's maximum sand free rate (MSFR). This resulted in suboptimal production. A straddle packer assembly was installed across this upper zone, which isolated the sand production and, therefore, enabled the choke to be removed and the well production to be increased to its true, optimal capacity. Several previous attempts to deploy and install the straddle components at their required depth using the prescribed slickline deployment method proved unsuccessful, because of hold ups that occurred while running in hole—due to a well trajectory of 72 degrees deviation and 4.579 deg/100 ft dog leg severity, coupled with the small tubing inside diameter (ID) associated with the slim 3 ½ in. completion. Furthermore, it was found that insufficient forces were available via slickline deployment to execute the related stabbing, setting and release actions required during in-well straddle component installation, because of the limited jar down weight available and safe working load limits on the slickline at the setting depth. As a result, a slim 2 ⅛ in. electric line tractor was utilised, in combination with a 2 ½ in. electrohydraulic linear actuator (stroker). The tractor conveyed the various straddle packer and spacer elements (straddle tubes) to depth and the stroker installed these components in the well to confirm their engagement and to ensure their controlled and confirmed release. Being bi-directional by design, the stroker provided both the upward and downward forces required for component installation—stabbing, setting, and pin shearing to release. The stroker was also available in the toolstring in case of any inadvertent tool sticking encountered while running in hole due to the well trajectory and produced sand debris. A system integration test (SIT) was meticulously planned and executed by the relevant operator and service company representatives before the operation. It was used to confirm the stroker's capability to stab and set the straddle tube into the lower packer and to shear the running tool used to install the straddle tubes and upper packer. This included the installation of straddle tubes into the lower packer section, done in a horizontal configuration and completed using higher setting and pulling forces than those expected during the actual job to ensure more than adequate forces would be available. The operation was executed successfully following the newly defined program, applying the lessons learned from the SIT. A total of four runs were carried out using the combined tractor/stroker deployment string configuration without any in-well deployment issues—the straddle component installation completed with 100% operational efficiency. Following this, the well was put back onto production and the production rate increased from approximately 1 million standard cubic feet per day (MMscf/D) to 3 MMscf/D, with no sand production observed at surface. Having not been done before, this methodology proved to be a successful option for the operator for straddle packer assembly deployment in deviated slim wells.
Due to sand production coming from the upper zone of a multizone monobore gas well completion, the well production had to be choked back to a flow rate below the well's maximum sand free rate (MSFR). This resulted in suboptimal production. A straddle packer assembly was installed across this upper zone, which isolated the sand production and, therefore, enabled the choke to be removed and the well production to be increased to its true, optimal capacity. Several previous attempts to deploy and install the straddle components at their required depth using the prescribed slickline deployment method proved unsuccessful, because of hold ups that occurred while running in hole—due to a well trajectory of 72 degrees deviation and 4.579 deg/100 ft dog leg severity, coupled with the small tubing inside diameter (ID) associated with the slim 3 ½ in. completion. Furthermore, it was found that insufficient forces were available via slickline deployment to execute the related stabbing, setting and release actions required during in-well straddle component installation, because of the limited jar down weight available and safe working load limits on the slickline at the setting depth. As a result, a slim 2 ⅛ in. electric line tractor was utilised, in combination with a 2 ½ in. electrohydraulic linear actuator (stroker). The tractor conveyed the various straddle packer and spacer elements (straddle tubes) to depth and the stroker installed these components in the well to confirm their engagement and to ensure their controlled and confirmed release. Being bi-directional by design, the stroker provided both the upward and downward forces required for component installation—stabbing, setting, and pin shearing to release. The stroker was also available in the toolstring in case of any inadvertent tool sticking encountered while running in hole due to the well trajectory and produced sand debris. A system integration test (SIT) was meticulously planned and executed by the relevant operator and service company representatives before the operation. It was used to confirm the stroker's capability to stab and set the straddle tube into the lower packer and to shear the running tool used to install the straddle tubes and upper packer. This included the installation of straddle tubes into the lower packer section, done in a horizontal configuration and completed using higher setting and pulling forces than those expected during the actual job to ensure more than adequate forces would be available. The operation was executed successfully following the newly defined program, applying the lessons learned from the SIT. A total of four runs were carried out using the combined tractor/stroker deployment string configuration without any in-well deployment issues—the straddle component installation completed with 100% operational efficiency. Following this, the well was put back onto production and the production rate increased from approximately 1 million standard cubic feet per day (MMscf/D) to 3 MMscf/D, with no sand production observed at surface. Having not been done before, this methodology proved to be a successful option for the operator for straddle packer assembly deployment in deviated slim wells.
This paper describes how an operator restored the casing integrity of a nonproducing well to resume offshore drilling operations by installing four 10¾-in. overlapping expandable steel patches. From 2020 to 2022, the operator scheduled a sidetrack drilling program, Māui A Crestal Infill (MACI), from the Māui A offshore platform, located in the Taranaki Basin of New Zealand. The operations included eight wells targeting the remaining unswept zones within the Māui A structure. During a reentry in a plugged and abandoned well, MA-03, a multifinger caliper log and a failed pressure test indicated a casing leak in the 10¾-in. intermediate casing. The log identified severe longitudinal casing wear with some fully penetrating holes. This lack of integrity prevented the scheduled operations from being performed. Several lost circulation material (LCM) and cement squeeze jobs attempted to seal off the leak but were unsuccessful. A service company proposed a mechanical repair solution to cover the long interval with four 13-m- (42.7-ft)-long customized, overlapping patches. Later, a second caliper was run to check if the cement squeeze jobs had reinforced the area for better patch support. Surprisingly, the zone appeared significantly more damaged, with a complete circumferential casing breach. Thus, the planned solution looked very challenging to implement. A video camera run, additional thinking, modeling, and cooperative engineering led to a complete redesign of the solution. The lengths and positions of the patches were changed, and one of the patches was assigned to serve as an inner reinforcement. The team assembled, deployed, and installed the patches in an accelerated mode. In 10 days, the casing integrity was fully restored, enabling the 8½-in. sidetrack hole to be drilled to total depth. This case is a typical example of how industry practices should evolve regarding the management of casing integrity issues. Remedial cement squeezes are often prioritized over mechanical options, even though mechanical options are now adjustable, much quicker to implement, and likely offer greater success rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.