Aerobic glycolysis is the dominant metabolic pathway utilized by cancer cells, owing to its ability to divert glucose metabolites from ATP production towards the synthesis of cellular building blocks (nucleotides, amino acids, and lipids) to meet the demands of proliferation. The M2 isoform of pyruvate kinase (PKM2) catalyzes the final and also a rate-limiting reaction in the glycolytic pathway. In the PK family, PKM2 is subjected to a complex regulation by both oncogenes and tumour suppressors, which allows for a fine-tone regulation of PKM2 activity. The less active form of PKM2 drives glucose through the route of aerobic glycolysis, while active PKM2 directs glucose towards oxidative metabolism. Additionally, PKM2 possesses protein tyrosine kinase activity and plays a role in modulating gene expression and thereby contributing to tumorigenesis. We will discuss our current understanding of PKM2's regulation and its many contributions to tumorigenesis.