2021
DOI: 10.3390/ma14133696
|View full text |Cite
|
Sign up to set email alerts
|

Influences of Dispersions’ Shapes and Processing in Magnetic Field on Thermal Conductibility of PDMS–Fe3O4 Composites

Abstract: Composites of magnetite (Fe3O4) nanoparticles dispersed in a polydimethylsiloxane (PDMS) matrix were prepared by a molding process. Two types of samples were obtained by free polymerization with randomly dispersed particles and by polymerization in an applied magnetic field. The magnetite nanoparticles were obtained from magnetic micrograins of acicular goethite (α-FeOOH) and spherical hematite (α-Fe2O3), as demonstrated by XRD measurements. The evaluation of morphological and compositional properties of the P… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

1
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 41 publications
(42 reference statements)
1
0
0
Order By: Relevance
“…EDS (energy dispersive spectroscopy) analysis shows 6.8 wt% of residual iron (Fe) catalyst in powdered CNTs. Peaks for the elements of PDMS, i.e., oxygen (O), silicon (Si) and carbon (c), are shown in the data for SWCNT-PDMS composites which is in good agreement with previously reported PDMS matrix data [ 34 ].
Fig.
…”
Section: Resultssupporting
confidence: 90%
“…EDS (energy dispersive spectroscopy) analysis shows 6.8 wt% of residual iron (Fe) catalyst in powdered CNTs. Peaks for the elements of PDMS, i.e., oxygen (O), silicon (Si) and carbon (c), are shown in the data for SWCNT-PDMS composites which is in good agreement with previously reported PDMS matrix data [ 34 ].
Fig.
…”
Section: Resultssupporting
confidence: 90%