2012
DOI: 10.5194/gi-1-85-2012
|View full text |Cite
|
Sign up to set email alerts
|

Influence of high-latitude geomagnetic pulsations on recordings of broadband force-balanced seismic sensors

Abstract: Abstract. Seismic broadband sensors with electromagnetic feedback are sensitive to variations of surrounding magnetic field, including variations of geomagnetic field. Usually, the influence of the geomagnetic field on recordings of such seismometers is ignored. It might be justified for seismic observations at middle and low latitudes. The problem is of high importance, however, for observations in Polar Regions (above 60 • geomagnetic latitude), where magnitudes of natural magnetic disturbances may be two or… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2015
2015
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 29 publications
(38 reference statements)
0
1
0
Order By: Relevance
“…Forbriger (2007) presented seismograms showing clear signals corresponding to a couple of SSC events recorded at stations of the German Regional Seismic Network and proposed that the magnetic field disturbances affected the suspension springs of the inertial mass, resulting in apparent accelerations proportional to the variations of the magnetic field which, at low frequencies, can be larger than the accelerations due to mechanical accelerations generated by soil vibration. Alternatively, Kozlovskaya and Kozlovsky (2012) proposed that the origin of the magnetic signals generated by geomagnetic pulsations in seismic records has their origin in the feedback system of the sensor. Under this hypothesis, the geomagnetic field variations would result in an induced current modifying the electrical current flowing through the large capacitor and the feedback coil and resulting in apparent accelerations not related to ground motion.…”
Section: Discussionmentioning
confidence: 99%
“…Forbriger (2007) presented seismograms showing clear signals corresponding to a couple of SSC events recorded at stations of the German Regional Seismic Network and proposed that the magnetic field disturbances affected the suspension springs of the inertial mass, resulting in apparent accelerations proportional to the variations of the magnetic field which, at low frequencies, can be larger than the accelerations due to mechanical accelerations generated by soil vibration. Alternatively, Kozlovskaya and Kozlovsky (2012) proposed that the origin of the magnetic signals generated by geomagnetic pulsations in seismic records has their origin in the feedback system of the sensor. Under this hypothesis, the geomagnetic field variations would result in an induced current modifying the electrical current flowing through the large capacitor and the feedback coil and resulting in apparent accelerations not related to ground motion.…”
Section: Discussionmentioning
confidence: 99%