Titanium alloys are considered lightweight alloys and are widely applied across various industries. However, their low hardness, poor wear resistance, and limited oxidation resistance restrict their prospects for wider application. In this paper, nitride coatings were prepared using three preparation processes, namely laser surface nitriding (LSN), physical vapor deposition (PVD), and plasma ion implantation (PII). Their microstructure, microhardness, tribological behavior, and high-temperature oxidation characteristics were compared. The experimental results revealed that nitrided coatings were successfully prepared using the three methods. However, a comparison of these data shows that the LSN coating exhibited superior comprehensive performance. It achieved the maximum thickness within the shortest preparation time: the thickness was about 280 μm and the deposition rate of the LSN method was 2250 and 90,000 times higher than those of the PVD and PII methods. Nitrides have high hardness, but the carrying capacity could be attributed to the thickness of the coatings: the PVD coating could withstand a force of 500 g, while the PII coating only withstood a force of less than 25 g. In addition, as hardness is the most important factor for excellent wear resistance, the average volumetric wear rate of the LSN and PVD coatings was about 9 × 10−6 mm3/m·N, and their relative wear resistance was 49.2 times that of Ti6Al4V. Meanwhile, the excellent bond between the LSN coating and the substrate was evidenced by a high-temperature oxidation test during a rapid heating–cooling cycle.