2022
DOI: 10.1112/topo.12271
|View full text |Cite
|
Sign up to set email alerts
|

Infinitely many virtual geometric triangulations

Abstract: We prove that every cusped hyperbolic 3-manifold has a finite cover admitting infinitely many geometric ideal triangulations. Furthermore, every long Dehn filling of one cusp in this cover admits infinitely many geometric ideal triangulations. This cover is constructed in several stages, using results about separability of peripheral subgroups and their double cosets, in addition to a new conjugacy separability theorem that may be of independent interest. The infinite sequence of geometric triangulations is su… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?