Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PurposeThis study investigates how federated learning (FL) and human–robot collaboration (HRC) can be used to manage diverse industrial environments effectively. We aim to demonstrate how these technologies not only improve cooperation between humans and robots but also significantly enhance productivity and innovation within industrial settings. Our research proposes a new framework that integrates these advancements, paving the way for smarter and more efficient factories.Design/methodology/approachThis paper looks into the difficulties of handling diverse industrial setups and explores how combining FL and HRC in the mark of Industry 5.0 paradigm could help. A literature review is conducted to explore the theoretical insights, methods and applications of these technologies that justify our proposal. Based on this, a conceptual framework is proposed that integrates these technologies to manage heterogeneous industrial environments.FindingsThe findings drawn from the literature review performed, demonstrate that personalized FL can empower robots to evolve into intelligent collaborators capable of seamlessly aligning their actions and responses with the intricacies of factory environments and the preferences of human workers. This enhanced adaptability results in more efficient, harmonious and context-sensitive collaborations, ultimately enhancing productivity and adaptability in industrial operations.Originality/valueThis research underscores the innovative potential of personalized FL in reshaping the HRC landscape for manage heterogeneous industrial environments, marking a transformative shift from traditional automation to intelligent collaboration. It lays the foundation for a future where human–robot interactions are not only more efficient but also more harmonious and contextually aware, offering significant value to the industrial sector.
PurposeThis study investigates how federated learning (FL) and human–robot collaboration (HRC) can be used to manage diverse industrial environments effectively. We aim to demonstrate how these technologies not only improve cooperation between humans and robots but also significantly enhance productivity and innovation within industrial settings. Our research proposes a new framework that integrates these advancements, paving the way for smarter and more efficient factories.Design/methodology/approachThis paper looks into the difficulties of handling diverse industrial setups and explores how combining FL and HRC in the mark of Industry 5.0 paradigm could help. A literature review is conducted to explore the theoretical insights, methods and applications of these technologies that justify our proposal. Based on this, a conceptual framework is proposed that integrates these technologies to manage heterogeneous industrial environments.FindingsThe findings drawn from the literature review performed, demonstrate that personalized FL can empower robots to evolve into intelligent collaborators capable of seamlessly aligning their actions and responses with the intricacies of factory environments and the preferences of human workers. This enhanced adaptability results in more efficient, harmonious and context-sensitive collaborations, ultimately enhancing productivity and adaptability in industrial operations.Originality/valueThis research underscores the innovative potential of personalized FL in reshaping the HRC landscape for manage heterogeneous industrial environments, marking a transformative shift from traditional automation to intelligent collaboration. It lays the foundation for a future where human–robot interactions are not only more efficient but also more harmonious and contextually aware, offering significant value to the industrial sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.