2018
DOI: 10.1002/cctc.201801262
|View full text |Cite
|
Sign up to set email alerts
|

In Situ O2 Generation for Biocatalytic Oxyfunctionalization Reactions

Abstract: O2‐dependent whole‐cell bioprocesses, such as C−H oxyfunctionalizations, are constrained by technically limited O2 mass transfer and biocatalyst‐inherent O2 respiration. In large‐scale bioprocesses, this restricts the maximum achievable productivity to 5.6 gproduct L−1 h−1 assuming a resting cell concentration of 9.4 gCDW L−1. This concept paper discusses strategies to enhance the O2 availability for biocatalytic oxyfunctionalizations with a focus on the in situ generation of O2 from water. This promising appr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
19
0
3

Year Published

2019
2019
2020
2020

Publication Types

Select...
5

Relationship

3
2

Authors

Journals

citations
Cited by 20 publications
(22 citation statements)
references
References 81 publications
0
19
0
3
Order By: Relevance
“…In this study, we showed that Mo hydroxylase‐based whole‐cell biocatalysts enable complete anaerobic carbon oxyfunctionalization when coupled to alternative respiration schemes such as nitrate respiration. For aerobic cultivations and biotransformations, O 2 mass transfer at high rates is crucial, especially when oxygenase catalysis is involved . In scale‐up, O 2 mass transfer becomes a critical factor that, on the one hand, limits applicable biocatalyst concentrations and performance and, on the other hand, causes safety issues and increased energy costs.…”
Section: Discussionmentioning
confidence: 99%
“…In this study, we showed that Mo hydroxylase‐based whole‐cell biocatalysts enable complete anaerobic carbon oxyfunctionalization when coupled to alternative respiration schemes such as nitrate respiration. For aerobic cultivations and biotransformations, O 2 mass transfer at high rates is crucial, especially when oxygenase catalysis is involved . In scale‐up, O 2 mass transfer becomes a critical factor that, on the one hand, limits applicable biocatalyst concentrations and performance and, on the other hand, causes safety issues and increased energy costs.…”
Section: Discussionmentioning
confidence: 99%
“…Next to linking photochemistry to enzymes in vitro for cofactor regeneration, autotrophic and chemolithoautotrophic organisms have recently received attention as they are capable of utilizing inorganic compounds as electron donors . Light‐driven whole‐cell reactions in cyanobacteria show the same reaction rates as E. coli . Yet, the strong absorption of the photosynthetic apparatus lead to self‐shading of the cells at high densities, thus resulting in a low light utilization and a reduced photosynthetic activity .…”
Section: Figurementioning
confidence: 99%
“…Um diese Herausforderung zu lösen, werden derzeit viele alternative Ansätze in Betracht gezogen . Neben der Verknüpfung der Photochemie mit Enzymen in vitro zur Cofaktor‐Regeneration, haben autotrophe und chemolithoautotrophe Organismen in jüngster Zeit Aufmerksamkeit erhalten, da sie dazu in der Lage sind, anorganische Verbindungen als Elektronendonoren zu nutzen . Licht‐getriebene Ganzzellreaktionen in Cyanobakterien zeigen die gleichen Reaktionsgeschwindigkeiten wie E. coli .…”
Section: Figureunclassified
“…[16][17][18] Neben der Verknüpfung der Photochemie mit Enzymen in vitro zur Cofaktor-Regeneration, [18][19][20][21][22][23][24] haben autotrophe und chemolithoautotrophe Organismen in jüngster Zeit Aufmerksamkeit erhalten, da sie dazu in der Lage sind, anorganische Verbindungen als Elektronendonoren zu nutzen. [25][26][27][28][29] Lichtgetriebene Ganzzellreaktionen in Cyanobakterien zeigen die gleichen Reaktionsgeschwindigkeiten wie E. coli. [26,27,29] Die starke Absorption des Photosyntheseapparats führt jedoch zur Selbstbeschattung bei hohen Zelldichten, was in einer geringen Lichtausnutzung und einer verringerten Photosynthese-Aktivität resultiert.…”
unclassified
See 1 more Smart Citation