Summary
For any oil and gas company, well-testing and performance-monitoring programs are expensive because of the cost of equipment and personnel. In addition, it may not be possible to obtain all of the necessary data for a reservoir for a period of time because of production demand constraints or changes in surface process conditions. To overcome these challenges, there are many studies on the implementation and value of virtual flowmetering (VFM) for real-time well performance prediction without any need for a comprehensive well-testingprogram.
This paper presents the VFM model using an adaptive neuro-fuzzy inference system (ANFIS) at Hai Thach-Moc Tinh (HT-MT) gas-condensate field, offshore Vietnam. The ANFIS prediction model can tune all its membership functions (MFs) and consequent parameters to formulate the given inputs to the desired output with minimum error. In addition, ANFIS is a successful technique used to process large amounts of complex time series data and multiple nonlinear inputs-outputs (Salleh et al. 2017), thereby enhancing predictability. The authors have built ANFIS models combined with large data sets, data smoothing, and k-fold cross-validation methods based on the actual historical surface parameters such as choke valve opening, surface pressure, temperature, the inlet pressure of the gas processing system, etc. The prediction results indicate that the local regression “loess” data smoothing method reduces the processing time and gives both clustering algorithms the best results among the different data preprocessing techniques [highest value of R and lowest value of mean squared error (MSE), error mean, and error standard deviation]. The k-fold cross-validation technique demonstrates the capability to avoid the overfitting phenomenon and enhance prediction accuracy for the ANFIS subtractive clustering model. The fuzzy C-mean (FCM) model in the present study can predict the gas condensate production with the smallest root MSE (RMSE) of 0.0645 and 0.0733; the highest coefficient of determination (R2) of 0.9482 and 0.9337; and the highest variance account of 0.9482 and 0.9334 for training and testing data, respectively. Applied at the HT-MT field, the model allows the rate estimation of the gas and condensate production and facilitates the virtual flowmeter workflow using the ANFIS model.