This article investigates whether higher classification accuracy can always be achieved by utilizing a pre-trained deep learning model as the feature extractor in the Bag-of-Deep-Visual-Words (BoDVW) classification model, as opposed to directly using the new classification layer of the pre-trained model for classification. Considering the multiple factors related to the feature extractor -such as model architecture, fine-tuning strategy, number of training samples, feature extraction method, and feature encoding method—we investigate these factors through experiments and then provide detailed answers to the question. In our experiments, we use five feature encoding methods: hard-voting, soft-voting, locally constrained linear coding, super vector coding, and fisher vector (FV). We also employ two popular feature extraction methods: one (denoted as Ext-DFs(CP)) uses a convolutional or non-global pooling layer, and another (denoted as Ext-DFs(FC)) uses a fully-connected or global pooling layer. Three pre-trained models—VGGNet-16, ResNext-50(32×4d), and Swin-B—are utilized as feature extractors. Experimental results on six datasets (15-Scenes, TF-Flowers, MIT Indoor-67, COVID-19 CXR, NWPU-RESISC45, and Caltech-101) reveal that compared to using the pre-trained model with only the new classification layer re-trained for classification, employing it as the feature extractor in the BoDVW model improves the accuracy in 35 out of 36 experiments when using FV. With Ext-DFs(CP), the accuracy increases by 0.13% to 8.43% (averaged at 3.11%), and with Ext-DFs(FC), it increases by 1.06% to 14.63% (averaged at 5.66%). Furthermore, when all layers of the pre-trained model are fine-tuned and used as the feature extractor, the results vary depending on the methods used. If FV and Ext-DFs(FC) are used, the accuracy increases by 0.21% to 5.65% (averaged at 1.58%) in 14 out of 18 experiments. Our results suggest that while using a pre-trained deep learning model as the feature extractor does not always improve classification accuracy, it holds great potential as an accuracy improvement technique.