Àíîòàö³ÿ ÌÀÒÅÌÀÒÈ×ÍÀ ÌÎÄÅËÜ ÏÅÐÅÕ²ÄÍÈÕ ÏÐÎÖÅѲ  ÊвÎÒÐÎÍÀÕ ÍÀ ÎÑÍβ ÑʲIJÂ
Ì. Â. Òèõàíñüêèé, À. ². ÏàðòèêàÂèêîðèñòîâóþ÷è åêâ³âàëåíòíó ñõåìó òà ïðèíöèï ðîáîòè äâîêîíòàêòíîãî íàäïðîâ³äíîãî êâàíòîâîãî ³íòåðôåðîìåòðà (ÑʲÄà) ÿê åëåìåíòà êîìï'þòåðíî¿ ïàì'ÿò³, ñòâîðåíî ìàòåìà-òè÷íó ìîäåëü ïåðåõ³äíèõ ïðîöåñ³â ó òàêèõ åëåìåíòàõ ïàì'ÿò³. Ðîçðàõîâàíî ïåðåõ³äí³ õàðàê-òåðèñòèêè êâàíòîâèõ êð³îòðîí³â ïðè êåðóâàíí³ ¿õ ëîã³÷íèì ñòàíîì ³ìïóëüñàìè ìàãí³òíîãî ïîòîêó äëÿ ëîã³÷íèõ ïåðåõîä³â "0"→"1" òà "1"→"0". Ïîêàçàíî, ùî ñòàá³ëüíî ïðàöþâàòè òàê³ êð³îòðîíè ìîaeóòü ò³ëüêè ïðè ëîã³÷íèõ ïåðåõîäàõ "0"→"1". Äîñë³äaeåíî âïëèâ íà ïåðå-õ³äí³ õàðàêòåðèñòèêè êð³îòðîí³â àìïë³òóäè êåðóþ÷èõ ³ìïóëüñ³â ³ ñåðåäíüî¿ òðèâàëîñò³ ³ìïó-ëüñ³â.Êëþ÷îâ³ ñëîâà: ÑʲÄ, êâàíòîâà êîì³ðêà ïàì'ÿò³, äaeîçåôñîí³âñüêèé êð³îòðîí, ïåðåõ³äíà õàðàêòåðèñòèêà, ëîã³÷íèé ïåðåõ³ä, íàäïðîâ³äíèé ³íòåðôåðîìåòð.
Abstract A MATHEMATICAL MODEL OF TRANSITIONAL PROCESSES IN CRYOTRONS BASED SQUIDS
Ì. V. Tyhanskyi, À. ². PartykaUsing an equivalent circuit and the operational principle of a two-terminal Superconducting Quantum Interference Device (SQUID) as a computer memory cell, a mathematical model of transitional processes in such quantum cryotrons has been created. The magnetic flux regulated logicstate transitional characteristics of quantum cryotrons are calculated for logic transitions "0"→"1" and "1"→"0". We show that stable functioning of these cryotrons is possible only for logic transitions "0"→"1". The influence of the amplitude of the regulating magnetic flux impulses and the average duration of an impulse on the transitional characteristics of cryotrons is investigated.