2022
DOI: 10.1016/j.supflu.2021.105468
|View full text |Cite
|
Sign up to set email alerts
|

Improved extraction of bioactive compounds from Monteverdia aquifolia leaves by pressurized-liquid and ultrasound-assisted extraction: Yield and chemical composition

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
4
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 13 publications
(7 citation statements)
references
References 33 publications
0
4
0
Order By: Relevance
“…Tiliaceae Methanol [44] Syzygium cumini L. Myrtaceae 70% methanol [45] Garcinia prainiana Clusiaceae n-hexane [27] Uapaca ambanjensis Euphorbiaceae Sequentially with n-hexane, dichloromethane, ethyl acetate, and methanol, respectively [46] Elaeocarpus floribundus Elaeocarpaceae Sequentially with hexane, chloroform, ethyl acetate, and methanol [47] Elytranthe parasitica Loranthaceae Methanol [48] Dombeya torrida Sterculiaceae Chloroform [49] Leaves Azima tetracantha Lam. Salvadoraceae Hexane [50] Maytenus ilicifolia Celastraceae Hexane: Ethyl acetate (8:2, v/v) [7,51] Populus davidiana Salicaceae Liquid WPM medium with 1% sucrose [52] Maytenus aquifolium Celastraceae Ethanol [53] Garcinia imberti Clusiaceae Hexane [54] Combretum duarteanum Combretaceae Ethanol [55] Hibiscus tiliaceus Malvaceae Dichloromethane [56] Vaccinium vitisidaea L. Ericaceae Chloroform [57] Kalanchoe fedtschenkoi Crassulaceae Hexane and chloroform [58] Grewia tiliaefolia Malvaceae Methanol [59] Dombeya torrida Sterculiaceae Dichloromethane: Methanol (50:50) [49] Garcinia rubroechinata Clusiaceae n-hexane followed by methanol [60] Tapinanthus bangwensis Loranthaceae Successively with n-hexane, ethyl acetate, and methanol [20] Monteverdia aquifolia Celastraceae Ethanol [61] Ficus drupacea Moraceae NA [62] Rhizomes Polygonum bistorta Polygonaceae Chloroform [63] Flower Mammea siamensis Clusiaceae Chloroform and methanol [64] Root Cannabis sativa Cannabaceae EtOH and n-hexane [65] Aerial parts Prunus lusitanica Rosaceae Petroleum ether [66] Leonotis nepetifolia (L.) R. Br Lamiaceae Ethanol followed by methanol [67] Lichen Alectoria ochroleuca Parmeliaceae Acetone [10]…”
Section: Sources Of Friedelinmentioning
confidence: 99%
“…Tiliaceae Methanol [44] Syzygium cumini L. Myrtaceae 70% methanol [45] Garcinia prainiana Clusiaceae n-hexane [27] Uapaca ambanjensis Euphorbiaceae Sequentially with n-hexane, dichloromethane, ethyl acetate, and methanol, respectively [46] Elaeocarpus floribundus Elaeocarpaceae Sequentially with hexane, chloroform, ethyl acetate, and methanol [47] Elytranthe parasitica Loranthaceae Methanol [48] Dombeya torrida Sterculiaceae Chloroform [49] Leaves Azima tetracantha Lam. Salvadoraceae Hexane [50] Maytenus ilicifolia Celastraceae Hexane: Ethyl acetate (8:2, v/v) [7,51] Populus davidiana Salicaceae Liquid WPM medium with 1% sucrose [52] Maytenus aquifolium Celastraceae Ethanol [53] Garcinia imberti Clusiaceae Hexane [54] Combretum duarteanum Combretaceae Ethanol [55] Hibiscus tiliaceus Malvaceae Dichloromethane [56] Vaccinium vitisidaea L. Ericaceae Chloroform [57] Kalanchoe fedtschenkoi Crassulaceae Hexane and chloroform [58] Grewia tiliaefolia Malvaceae Methanol [59] Dombeya torrida Sterculiaceae Dichloromethane: Methanol (50:50) [49] Garcinia rubroechinata Clusiaceae n-hexane followed by methanol [60] Tapinanthus bangwensis Loranthaceae Successively with n-hexane, ethyl acetate, and methanol [20] Monteverdia aquifolia Celastraceae Ethanol [61] Ficus drupacea Moraceae NA [62] Rhizomes Polygonum bistorta Polygonaceae Chloroform [63] Flower Mammea siamensis Clusiaceae Chloroform and methanol [64] Root Cannabis sativa Cannabaceae EtOH and n-hexane [65] Aerial parts Prunus lusitanica Rosaceae Petroleum ether [66] Leonotis nepetifolia (L.) R. Br Lamiaceae Ethanol followed by methanol [67] Lichen Alectoria ochroleuca Parmeliaceae Acetone [10]…”
Section: Sources Of Friedelinmentioning
confidence: 99%
“…UAE enhances the efficiency of the extraction process by having a shorter process time, better penetration, lower solvent consumption, and higher extraction yield. Therefore, UAE could be considered a sustainable alternative to CE methods [66,69]. In addition, water is a suitable extracting solvent broadly applied for the extraction of biologically active compounds [70].…”
Section: Total Phenolic Content (Tpc) and Antioxidant Activity Of Ext...mentioning
confidence: 99%
“…The high solvent-to-biomass ratio increases the phenolic yield by increasing the concentration gradient and reducing the solvent viscosity [16]. Temperature affects the extract yield and extract composition, and with temperature increase, the extract solubility and the diffusion coefficient increase, thereby increasing extract yield, although thermo-sensitive compounds are likely to be degraded [10].…”
Section: Introductionmentioning
confidence: 99%