2006
DOI: 10.1142/s0219749906002353
|View full text |Cite
|
Sign up to set email alerts
|

Implementation of Quantum Logic Operations and Creation of Entanglement Between Two Nuclear Spin Qubits With Constant Interaction

Abstract: We describe how to implement quantum logic operations in a silicon-based quantum computer with phosphorus atoms serving as qubits. The information is stored in the states of nuclear spins and the conditional logic operations are implemented through the electron spins using nuclear–electron hyperfine and electron–electron exchange interactions. The electrons in our computer should stay coherent only during implementation of one Controlled-NOT gate. The exchange interaction is constant, and selective excitations… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?