2020
DOI: 10.1016/j.tsf.2020.138223
|View full text |Cite
|
Sign up to set email alerts
|

Impact of silver incorporation at the back contact of Kesterite solar cells on structural and device properties

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 32 publications
(46 reference statements)
0
1
0
2
Order By: Relevance
“…图 11 分别给出了 CAZTS [69] 和 CLZTS [58] [58,69] Figure 11 X-ray diffraction patterns of (I) CAZTS, (II) CAZTSe, and (III, IV) CLZTS solid solutions [58,69] 驱膜中 [58] Figure 12 Li content as measured by inductively coupled plasma mass spectrometry (ICP-MS) at different steps of device processing [58] 为了获得更高替位量 [50,70,90,94] , 该液相固溶体在反应过程中可以促进传质、加速元素扩 散和反应, 促进晶粒生长; 第二种是认为 Ag + 与硫化(硒 化)过程中的 S(Se)结合形成低熔点的 Ag-S(Se)液相助熔 剂 [84] , 并促进晶粒生长. 两种解释的区别在于形成的助 熔剂不同, Mwakyusa 等 [84] 认为 Ag-S(Se)助熔剂通常在 湿化学法制备的含 S 前驱膜中较易形成, 而 Sn-Ag-Cu 固溶体在真空法制备的仅含金属元素的前驱膜中较易 形成, 且还受到前驱膜组分和硫化(硒化)过程的影响. 对于 Li + 而言, 类似碱金属掺杂剂的作用, 在富 S(Se)的 环境中 Li + 在低温阶段(300 ℃)会形成 Li-Se 液相助熔 剂, 促进传质和晶粒生长 [58,90,97] .…”
Section: LIunclassified
See 1 more Smart Citation
“…图 11 分别给出了 CAZTS [69] 和 CLZTS [58] [58,69] Figure 11 X-ray diffraction patterns of (I) CAZTS, (II) CAZTSe, and (III, IV) CLZTS solid solutions [58,69] 驱膜中 [58] Figure 12 Li content as measured by inductively coupled plasma mass spectrometry (ICP-MS) at different steps of device processing [58] 为了获得更高替位量 [50,70,90,94] , 该液相固溶体在反应过程中可以促进传质、加速元素扩 散和反应, 促进晶粒生长; 第二种是认为 Ag + 与硫化(硒 化)过程中的 S(Se)结合形成低熔点的 Ag-S(Se)液相助熔 剂 [84] , 并促进晶粒生长. 两种解释的区别在于形成的助 熔剂不同, Mwakyusa 等 [84] 认为 Ag-S(Se)助熔剂通常在 湿化学法制备的含 S 前驱膜中较易形成, 而 Sn-Ag-Cu 固溶体在真空法制备的仅含金属元素的前驱膜中较易 形成, 且还受到前驱膜组分和硫化(硒化)过程的影响. 对于 Li + 而言, 类似碱金属掺杂剂的作用, 在富 S(Se)的 环境中 Li + 在低温阶段(300 ℃)会形成 Li-Se 液相助熔 剂, 促进传质和晶粒生长 [58,90,97] .…”
Section: LIunclassified
“…[67] Figure 10 (I) The phase structure of CZTS vs Li doping level; (II) the formation energy of Li occupied at different Wyckoff sites vs Li doping level (compared to Ag) [67] 3 CZTSSe 一价金属部分替位的实验研究 [19,24,43,[75][76] [50,[69][70][77][78][79][80] 、共蒸发法 [81] 和高温固相法 [69,[82][83] . 溅射 法和共蒸发法的制备通常要经历两阶段, 首先使用金属 元素(Ag、Cu、Zn、Sn)单质或硫(硒)化物作为金属源制 备金属预制层(Ag 层可位于金属预制层和 Mo 衬底之 间 [50,70,77,79,84] 、金属预制层中 [70,80] 或顶部 [78] ). 除了溅射 法和蒸发法, 还可以用沉积法制备 [77] .…”
unclassified
“…So far, limited reports have been accessible on Ag alloying in CZTSe thin films and its device performance, where twostep methods were adopted for the preparation of Ag-alloyed CZTSe thin films comprising of deposition of metallic thin films by physical and chemical techniques such as sputtering, solution proceeds, co-evaporation, and thermal evaporation followed by annealing/selenization at elevated temperature (≥500 °C). [1,[28][29][30][32][33][34][35][36][37] However, due to the high diffusivity of silver at high temperatures, it rapidly distributes throughout the depth of the CAZTSe films and it is difficult to control its uniform distribution across the film thickness at elevated temperatures. [28] In this connection, low-temperature selenization (≤480 °C) was explored for the uniform distribution of Ag in CZTSe thin films.…”
Section: Introductionmentioning
confidence: 99%
“…The highest efficiency attained for CZTS(Se) is 13.2% in the nonvacuum process currently [15], followed by 12.62% in the vacuum process [16]. The currently lower efficiency of CZTS(Se) compared to CIGS can be primarily attributed to the lower open-circuit voltage (V OC ) and the lower fill factor [17]. Most studies attribute the lower V OC primarily to the secondary phases in the absorber layers, smaller grain size, and CuZn antisite defects, of which the secondary phases are the most significant factor in relation to CZTS(Se).…”
Section: Introductionmentioning
confidence: 99%