We present experimental support for a model of abalone nacre growth that is based on mineral bridges between successive aragonite tablets rather than on heteroepitaxial nucleation. Interlamellar sheets of organic polymers delineate the aragonite tablets but allow the tablets to grow mineral bridges through pores in the sheets. Atomic force microscope images of interlamellar organic sheets from flat pearls made by Haliotis rufescens (red abalone; marine gastropod mollusk) reveal a fibrous core and holes of 5-50 nm in diameter. Scanning ion conductance microscopy shows that these holes are actually pores through the interlamellar sheets. With the help of statistical analysis we can associate the pore-to-pore spacings in the interlamellar sheets with the observed offsets of successive nacre tablets. These results, supplemented by AFM, SEM, and TEM images, support and extend the model of biofabrication of gastropod nacre which is based on mineral bridges between the aragonite tablets.(in the aragonite polymorph) and proteins, exhibiting exceptional regularity and mechanical strength. 1,2,[18][19][20][21][22][23][24][25][26][27][28][29][30] The interdigitating brickwork array of crystals and