2021
DOI: 10.1142/s0218216521500723
|View full text |Cite
|
Sign up to set email alerts
|

Identifying non-pseudo-alternating knots by using the free factor property of minimal genus Seifert surfaces

Abstract: Pseudo-alternating knots and links are defined constructively via their Seifert surfaces. By performing Murasugi sums of primitive flat surfaces, such a knot or link is obtained as the boundary of the resulting surface. Conversely, it is hard to determine whether a given knot or link is pseudo-alternating or not. A major difficulty is the lack of criteria to recognize whether a given Seifert surface is decomposable as a Murasugi sum. In this paper, we propose a new idea to identify non-pseudo-alternating knot… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?