2014
DOI: 10.3892/mmr.2014.2693
|View full text |Cite
|
Sign up to set email alerts
|

Identification of dysregulated pathways associated with pancreatic cancer by survival analysis

Abstract: In order to identify the dysregulated pathways associated with pancreatic cancer, the fourth leading cause of cancer mortality in the United States, tumor and non-tumor samples were systematically analyzed in the present study. Initially, dysregulated genes in pancreatic cancer were identified using paired t-test. Subsequently, dysregulated biological pathways involved in the development of pancreatic cancer were identified by enrichment analysis. Finally, individual survival analysis of the significantly dysr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2017
2017
2019
2019

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 37 publications
0
2
0
Order By: Relevance
“…Historically, the development of PDAC was attributed to DNA mutations, which are classified into three main types: oncogenes (KRAS, BRAF, AKT2, MYB, and AIBI), tumor suppressor genes (p16, CDKN2A, p53, p21, BRCA2, and SMAD4), and genome maintenance and repair genes (MLH, MSH2, and BRCA2) [1,2]. Several studies explained the complexity of genetic aberrations and their regulatory signaling pathways [3]. Although a large variety of signal transduction pathways have already been studied in PDAC, much less is known about the cross talk between epigenetic mechanism and signaling pathways typical for PDAC [1].…”
Section: Pdac From Genetics To Epigeneticsmentioning
confidence: 99%
See 1 more Smart Citation
“…Historically, the development of PDAC was attributed to DNA mutations, which are classified into three main types: oncogenes (KRAS, BRAF, AKT2, MYB, and AIBI), tumor suppressor genes (p16, CDKN2A, p53, p21, BRCA2, and SMAD4), and genome maintenance and repair genes (MLH, MSH2, and BRCA2) [1,2]. Several studies explained the complexity of genetic aberrations and their regulatory signaling pathways [3]. Although a large variety of signal transduction pathways have already been studied in PDAC, much less is known about the cross talk between epigenetic mechanism and signaling pathways typical for PDAC [1].…”
Section: Pdac From Genetics To Epigeneticsmentioning
confidence: 99%
“…Pancreatic ductal adenocarcinoma (PDAC) comprises more than 90% of all pancreatic cancer cases. It is highly aggressive, extremely lethal and shows resistance to chemotherapy [1][2][3]. At diagnosis, around 80% of PDAC cases have already metastasized, thus rendering the current therapeutic options practically ineffective.…”
Section: Introductionmentioning
confidence: 99%