2023
DOI: 10.3390/s23125510
|View full text |Cite
|
Sign up to set email alerts
|

Identification and Tracking of Vehicles between Multiple Cameras on Bridges Using a YOLOv4 and OSNet-Based Method

Abstract: The estimation of vehicle loads is a rising research hotspot in bridge structure health monitoring (SHM). Traditional methods, such as the bridge weight-in-motion system (BWIM), are widely used but they fail to record the locations of vehicles on the bridges. Computer vision-based approaches are promising ways for vehicle tracking on bridges. Nevertheless, keeping track of vehicles from the video frames of multiple cameras without an overlapped visual field poses a challenge for the tracking of vehicles across… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 49 publications
0
0
0
Order By: Relevance