2017
DOI: 10.1002/jcp.25915
|View full text |Cite
|
Sign up to set email alerts
|

Identification and characterization of site‐specific N‐glycosylation in the potassium channel Kv3.1b

Abstract: The potassium ion channel Kv3.1b is a member of a family of voltage-gated ion channels that are glycosylated in their mature form. In the present study, we demonstrate the impact of N-glycosylation at specific asparagine residues on the trafficking of the Kv3.1b protein. Large quantities of asparagine 229 (N229)-glycosylated Kv3.1b reached the plasma membrane, whereas N220-glycosylated and unglycosylated Kv3.1b were mainly retained in the endoplasmic reticulum (ER). These ER-retained Kv3.1b proteins were susce… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 39 publications
0
5
0
Order By: Relevance
“…For Man1c1 , the interaction model does not reveal a new relationship, but instead highlights the fact that this gene-property relationship, if real, is potentially more complicated than would be assumed based on the class-conditional model alone. Man1c1 is an enzyme involved in the maturation of N-linked oligosaccharides [24], and is thus a plausible regulator of AHP amplitude, since N-linked glycosylation of voltage-gated potassium channels or their auxiliary subunits is known to regulate both surface trafficking and channel function [25,26]. The apparent class-specificity of this relationship could result from class-specific co-expression of certain potassium channels or other enzymes involved in glycan synthesis or maturation.…”
Section: Resultsmentioning
confidence: 99%
“…For Man1c1 , the interaction model does not reveal a new relationship, but instead highlights the fact that this gene-property relationship, if real, is potentially more complicated than would be assumed based on the class-conditional model alone. Man1c1 is an enzyme involved in the maturation of N-linked oligosaccharides [24], and is thus a plausible regulator of AHP amplitude, since N-linked glycosylation of voltage-gated potassium channels or their auxiliary subunits is known to regulate both surface trafficking and channel function [25,26]. The apparent class-specificity of this relationship could result from class-specific co-expression of certain potassium channels or other enzymes involved in glycan synthesis or maturation.…”
Section: Resultsmentioning
confidence: 99%
“…A recent study reports that N-glycans of Kv3.1b regulate cell surface expression since the cell surface expression is reduced 10-fold for the unglycosylated Kv3.1b protein compared to its glycosylated counterpart [ 44 ]. However, current density measurements of Kv3.1b expressing Sf9 insect [ 15 ], NB [ 17 ], NB_1, and NB_1 (-Mgat2) cell lines did not detect significant differences in cell surface expression between the glycosylated and unglycosylated Kv3.1b channels.…”
Section: Discussionmentioning
confidence: 99%
“…Man1c1 is an enzyme involved in the maturation of N-linked oligosaccharides (18), and is thus a plausible regulator of AHP amplitude, since N-linked glycosylation of voltage-gated potassium channels or their auxiliary subunits is known to regulate both surface trafficking and channel function (19,20).…”
Section: Divergent Gene-property Relationships In Inhibitory Versus Ementioning
confidence: 99%