2020
DOI: 10.20944/preprints202002.0388.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Identification and Characterization of Biosynthetic Gene Clusters from Halophilic Marine Fungus Eurotium rubrum

Abstract: Eurotium rubrum is a halophilic marine ascomycete, which can bear the hypersalinities of the Red Sea and proliferate, while most living entities cannot bear this condition. Recently, a 26.2 Mb assembled genome of this fungus had become available. Marine fungi are fascinating organisms capable of harboring several biosynthetic gene clusters (BGCs), which enables them to produce several natural compounds with antibiotic and anticancerous properties. Understanding the BGCs are critically important for the develop… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 21 publications
0
1
0
Order By: Relevance
“…More recently the squalestatin S1 producing BGC from Aspergillus sp. Z5 was reported in Paecilomyces penicillatus [72] and halophilic marine fungus Eurotium rubrum [73]. The cluster of both A. affinis strains shared three out of four genes of squalestatin S1 BGC: the core enzyme farnesyl-diphosphate farnesyltransferase (squalene synthase), a DnaJ domain protein and other one conserved hypothetical protein.…”
Section: Bgcsmentioning
confidence: 93%
“…More recently the squalestatin S1 producing BGC from Aspergillus sp. Z5 was reported in Paecilomyces penicillatus [72] and halophilic marine fungus Eurotium rubrum [73]. The cluster of both A. affinis strains shared three out of four genes of squalestatin S1 BGC: the core enzyme farnesyl-diphosphate farnesyltransferase (squalene synthase), a DnaJ domain protein and other one conserved hypothetical protein.…”
Section: Bgcsmentioning
confidence: 93%