General results concerning infinite divisibility, selfdecomposability, and the class L m property as properties of stochastic processes are presented. A new concept called temporal selfdecomposability of stochastic processes is introduced. Lévy processes, additive processes, selfsimilar processes, and stationary processes of Ornstein-Uhlenbeck type are studied in relation to these concepts. In the latter half of the paper time change of stochastic processes is studied, where chronometers (stochastic processes that serve to change time) and base processes (processes to be time-changed) are independent but do not, in general, have independent increments. Conditions for inheritance of infinite divisibility and selfdecomposability under time change are given.