2016
DOI: 10.1021/acs.jctc.5b01006
|View full text |Cite
|
Sign up to set email alerts
|

Ab InitioQuality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation

Abstract: Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order of a wide range of solid-state compounds. However, due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemica… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
60
0
2

Year Published

2017
2017
2021
2021

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 62 publications
(63 citation statements)
references
References 97 publications
1
60
0
2
Order By: Relevance
“…Obtaining suitable structural models is more of an open research question for glassy-type disorder and polymeric materials. Approaches that have been used successfully in NMR studies include quench-cooling of MD simulations of molten solids, 65 as well as approaches that avoid the need for large-scale DFT calculations, such as training neural networks to predict chemical shifts in glasses 66 or deriving empirical correlations from related compounds. 67,68 In contrast to "static disorder," dynamics tend to average NMR parameters, and so, depending on the time scale of the dynamics, will narrow rather than broaden NMR line shapes.…”
Section: Beyond Periodicitymentioning
confidence: 99%
“…Obtaining suitable structural models is more of an open research question for glassy-type disorder and polymeric materials. Approaches that have been used successfully in NMR studies include quench-cooling of MD simulations of molten solids, 65 as well as approaches that avoid the need for large-scale DFT calculations, such as training neural networks to predict chemical shifts in glasses 66 or deriving empirical correlations from related compounds. 67,68 In contrast to "static disorder," dynamics tend to average NMR parameters, and so, depending on the time scale of the dynamics, will narrow rather than broaden NMR line shapes.…”
Section: Beyond Periodicitymentioning
confidence: 99%
“…Über diese Anwendungen hinaus wurden viele neue Ideen in Bezug auf HDNNPs vorgeschlagen, wie die Verbesserung von semiempirischen Methoden zur Beschreibung des QM-Teils in QM/MM-Simulationen, [109] die Beschleunigung von Sattelpunktsuchen, [127] eine hierarchische Konstruktion von NNs fürM ehrkomponentensysteme, [133] die Vorhersage von NMR-Parametern von Festkçrpermaterialien, [137] die Vorhersage von thermodynamischen Grçßen [138] und ein neuer Ansatz zur Kombination mit Vielkçrper-Entwicklungen. Iterative Verbesserung des Trainingsdatensatzes mit zwei NNPs.…”
Section: Zusammenfassung Und Ausblickunclassified
“…In (c) stimmen beide NNPs sehr genau füralle Konfigurationen überein, was zeigt, dass alle relevanten Konfigurationen im Trainingssatz gut vertreten sind. Über diese Anwendungen hinaus wurden viele neue Ideen in Bezug auf HDNNPs vorgeschlagen, wie die Verbesserung von semiempirischen Methoden zur Beschreibung des QM-Teils in QM/MM-Simulationen, [109] die Beschleunigung von Sattelpunktsuchen, [127] eine hierarchische Konstruktion von NNs fürM ehrkomponentensysteme, [133] die Vorhersage von NMR-Parametern von Festkçrpermaterialien, [137] die Vorhersage von thermodynamischen Grçßen [138] und ein neuer Ansatz zur Kombination mit Vielkçrper-Entwicklungen. [139] Viele dieser Entwicklungen wurden erst kürzlich publiziert, was zeigt, dass sich dieser Forschungsbereich rasant entwickelt und viele interessante methodische Verbesserungen, die das Anwendungsspektrum von NNPs und MLPs erweitern werden, in naher Zukunft erwartet werden kçnnen.…”
Section: Diskussionunclassified
“…In recent years, machine learning approaches have widely spread in materials science to predict material properties quantitively and overcome various obstacles with extensive computations [20][21][22][23]. They have also been applied to spectroscopic data, such as infrared spectroscopy [24], nuclear magnetic resonance (NMR) [25], ELNES/XANES [26,27], and extended x-ray absorption fine structure (EXAFS) [28] to extract hidden information.…”
Section: Introductionmentioning
confidence: 99%