Some 4- and 2-(nitrobenzyloxycarbonyl)-1, 2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazines (4, 6, and 7) were synthesized and evaluated for their ability to exert preferential toxicity to hypoxic EMT6 mammary carcinoma cells using a colony-forming assay. Of these, the 4,5-dimethoxy-2-nitro analogue 6 (50 microM, 1-h exposure) caused greater than 3 logs of kill of hypoxic cells, with relatively minor toxicity to corresponding aerobic cells. The ability of 4-nitro (4) and 4,5-dimethoxy-2-nitro (6) analogues to reach and kill hypoxic cells of solid tumors was also demonstrated using intradermally implanted EMT6 solid tumors in mice. In addition, a possible source of toxicity to normal tissue, i. e., the activation of the 4-nitrobenzyl derivative 4 by glutathione S-transferase-catalyzed thiolysis, was essentially eliminated by replacing one of the benzylic methylene protons by a methyl group. The 4-nitro (4) and 4,5-dimethoxy-2-nitro (6) analogues also appear to be reduced more easily under acidic conditions (pH 6.0) than under neutral conditions, as measured by differential pulse polarography. Since the pH in hypoxic regions is often lower than that in adjacent aerobic regions, this property should aid in the cytotoxic action of these agents against hypoxic cells of solid tumors.