This paper reviews the research on the reversed field pinch (RFP) in the last three decades. Substantial experimental and theoretical progress and transformational changes have been achieved since the last review (Bodin 1990 Nucl. Fusion
30 1717–37). The experiments have been performed in devices with different sizes and capabilities. The largest are RFX-mod in Padova (Italy) and MST in Madison (USA). The experimental community includes also EXTRAP-T2R in Sweden, RELAX in Japan and KTX in China. Impressive improvements in the performance are the result of exploration of two lines: the high current operation (up to 2 MA) with the spontaneous occurrence of helical equilibria with good magnetic flux surfaces and the active control of the current profile. A crucial ingredient for the advancements obtained in the experiments has been the development of state-of-art active feedback control systems allowing the control of MHD instabilities in presence of a thin shell. The balance between achievements and still open issues leads us to the conclusion that the RFP can be a valuable and diverse contributor in the quest for fusion electricity.