Purpose
The purpose of this study is to examine theoretically the axisymmetric flow of a steady free-surface jet emerging from a tube for high inertia flow and moderate surface tension effect.
Design/methodology/approach
The method of matched asymptotic expansion is used to explore the rich dynamics near the exit where a stress singularity occurs. A boundary layer approach is also proposed to capture the flow further downstream where the free surface layer has grown significantly.
Findings
The jet is found to always contract near the tube exit. In contrast to existing numerical studies, the author explores the strength of upstream influence and the flow in the wall layer, resulting from jet contraction. This influence becomes particularly evident from the nonlinear pressure dependence on the upstream distance, as well as the pressure undershoot and overshoot at the exit for weak and strong gravity levels, respectively. The approach is validated against existing experimental and numerical data for the jet profile and centerline velocity where good agreement is obtained. Far from the exit, the author shows how the solution in the diffusive region can be matched to the inviscid far solution, providing the desired appropriate initial condition for the inviscid far flow solution. The location, at which the velocity becomes uniform across the jet, depends strongly on the gravity level and exhibits a non-monotonic behavior with respect to gravity and applied pressure gradient. The author finds that under weak gravity, surface tension has little influence on the final jet radius. The work is a crucial supplement to the existing numerical literature.
Originality/value
Given the presence of the stress singularity at the exit, the work constitutes a superior alternative to a computational approach where the singularity is typically and inaccurately smoothed over. In contrast, in the present study, the singularity is entirely circumvented. Moreover, the flow details are better elucidated, and the various scales involved in different regions are better identified.