Energy transformation powers change in the universe. In physical systems, maximal power (rate of energy input or output) may occur only at submaximal efficiency (output/input), or conversely, maximal efficiency may occur only at submaximal power. My review of power and efficiency in living systems at various levels of biological organization reveals that (1) trade-offs (negative correlations) between power and efficiency, as expected in physical systems, chiefly occur for resource-supply systems; (2) synergy (positive correlations) between power and efficiency chiefly occurs for resource use systems, which may result from (a) increasing energy allocation to production versus maintenance as production rate increases and (b) natural selection eliminating organisms that exceed a maximal power limit because of deleterious speed-related effects; (3) productive power indicates species-wide ‘fitness’, whereas efficiency of resource acquisition for production indicates local ‘adaptiveness’, as viewed along a body size spectrum and within clades of related species; (4) covariation of the power and efficiency of living systems occurs across space and time at many scales; (5) the energetic power/efficiency of living systems relates to the rates and efficiencies/effectiveness of nutrient/water uptake/use, the functional performance of various activities, and information acquisition/processing; and (6) a power/efficiency approach has many useful theoretical and practical applications deserving more study.