We evaluate the entanglement wedge cross section (EWCS) in asymptotically AdS geometries which are dual to boundary excited states. We carry out a perturbative analysis for calculating EWCS between the vacuum and other states for a symmetric configuration consisting of two disjoint strips and obtain analytical results in the specific regimes of the parameter space. In particular, when the states described by purely gravitational excitations in the bulk we find that the leading correction to EWCS is negative and hence the correlation between the boundary subregions decreases. We also study other types of excitations upon adding the extra matter fields including current and scalar condensate. Our study reveals some generic properties of boundary information measures dual to EWCS, e.g., entanglement of purification, logarithmic negativity and reflected entropy. Finally, we discuss how these results are consistent with the behavior of other correlation measures including the holographic mutual information.