Significance: Hemodynamic shear stress, the frictional force exerted onto the vascular endothelial cell (EC) surface, influences vascular EC functions. Atherosclerotic plaque formation in the endothelium is known to be site specific: disturbed blood flow (d-flow) formed at the lesser curvature of the aortic arch and branch points promotes plaque formation, and steady laminar flow (s-flow) at the greater curvature is atheroprotective. Recent Advances: Post-translational modifications (PTMs), including phosphorylation and SUMOylation, and epigenetic events, including DNA methylation and histone modifications, provide a new perspective on the pathogenesis of atherosclerosis, elucidating how gene expression is altered by d-flow. Activation of PKCf and p90RSK, SUMOylation of ERK5 and p53, and DNA hypermethylation are uniquely induced by d-flow, but not by s-flow. Critical Issues: Extensive cross talk has been observed among the phosphorylation, SUMOylation, acetylation, and methylation PTMs, as well as among epigenetic events along the cascade of d-flow-induced signaling, from the top (mechanosensory systems) to the bottom (epigenetic events). In addition, PKCf activation plays a role in regulating SUMOylation-related enzymes of PIAS4, p90RSK activation plays a role in regulating SUMOylation-related enzymes of Sentrin/SUMO-specific protease (SENP)2, and DNA methyltransferase SUMOylation may play a role in d-flow signaling. Future Directions: Although possible contributions of DNA events such as histone modification and the epigenetic and cytosolic events of PTMs in d-flow signaling have become clearer, determining the interplay of each PTM and epigenetic event will provide a new paradigm to elucidate the difference between d-flow and s-flow and lead to novel therapeutic interventions to inhibit plaque formation. Antioxid. Redox Signal. 25,[435][436][437][438][439][440][441][442][443][444][445][446][447][448][449][450]