2022
DOI: 10.3390/mi13060905
|View full text |Cite
|
Sign up to set email alerts
|

Highly active N, S Co-Doped Ultramicroporous Carbon for High-Performance Supercapacitor Electrodes

Abstract: N, S-doped ultramicroporous carbons (NSUC-x) with a high nitrogen/sulfur content and a narrow pore-size distribution of around 0.55 nm were firstly prepared using L-cysteine as a nitrogen and sulfur source. The phase, graphitization degree, morphology, specific surface area, pore structure and surface condition of NSUC-x are investigated to analyze the key role in electrochemical performance. Such an ultramicroporous structure and N, S doping not merely provide a high-specific surface area and a suitable pore … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 54 publications
0
1
0
1
Order By: Relevance
“…RI [43][44] ,HNCS-1.25-18 的 RI(0.44 [46][47] 。图 7(e)为不同 样品的 Nyquist 曲线,曲线与 x 轴的交点代表材料的等效 串联内阻 RS,RS 主要包括电解液的电阻、电极材 料自身的电阻和接触电阻等 [43][44] 。HNCS-1.25-12 具有最小的等效串联电阻值(0.45 Ω),说明其电荷 传输速率最快,损耗最低。高频区半圆的直径代表 电 解液与 材料接触 界面的 电荷转移 电阻 RCT, HNCS-1.25-12 的半圆直径最小, 表明其电荷在电解 液与材料表面处转移阻力最小 [48] 。中频区域的 [49] 。 此外, 由图 7(f)可知 HNCS-1.25-12…”
Section: 形貌调控机理unclassified
“…RI [43][44] ,HNCS-1.25-18 的 RI(0.44 [46][47] 。图 7(e)为不同 样品的 Nyquist 曲线,曲线与 x 轴的交点代表材料的等效 串联内阻 RS,RS 主要包括电解液的电阻、电极材 料自身的电阻和接触电阻等 [43][44] 。HNCS-1.25-12 具有最小的等效串联电阻值(0.45 Ω),说明其电荷 传输速率最快,损耗最低。高频区半圆的直径代表 电 解液与 材料接触 界面的 电荷转移 电阻 RCT, HNCS-1.25-12 的半圆直径最小, 表明其电荷在电解 液与材料表面处转移阻力最小 [48] 。中频区域的 [49] 。 此外, 由图 7(f)可知 HNCS-1.25-12…”
Section: 形貌调控机理unclassified
“…Supercapacitors can be classified into two main categories based on the energy storage mechanism of electrode materials: electric double-layer (EDL) capacitors and pseudocapacitors [ 4 , 10 ]. Energy is stored through electrostatic accumulation of charges at the electrode–electrolyte interfaces in EDL capacitors and by fast Faradaic reactions between the electrode and electrolyte [ 11 ]. Supercapacitors typically consist of three major parts: (i) electrolyte, (ii) electrode, and (iii) separator.…”
Section: Introductionmentioning
confidence: 99%