2021
DOI: 10.1512/iumj.2021.70.8297
|View full text |Cite
|
Sign up to set email alerts
|

Higher order degrees of affine plane curve complements

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
8
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(8 citation statements)
references
References 0 publications
0
8
0
Order By: Relevance
“…Remark We are using the convention prefixdeg0=$\deg 0=\infty$. The proof of [6, Theorem 5.18] assumes δ0(C)$\delta _0(C)$ is finite, but the result is also true for δ0(C)=$\delta _0(C)=\infty$ because δ0(C)badbreak=F1()H1false(U,u0;R0false)goodbreak=0F1()H1false(U,u0;double-struckZΓ0false)goodbreak=0ΔCmultigoodbreak=0.$$\begin{equation*} \delta _0(C)=\infty \Leftrightarrow F_1{\left(H_1(U,u_0;R_0)\right)}=0 \Leftrightarrow F_1{\left(H_1(U,u_0;\mathbb {Z}\Gamma _0)\right)}=0\Leftrightarrow \Delta _C^{\operatorname{multi}}=0. \end{equation*}$$In this list of equivalences, we have used that the projection GΓ0$G\twoheadrightarrow \Gamma _0$ is the abelianization morphism and that R 0 is flat as a double-struckZΓ0$\mathbb {Z}\Gamma _0$‐module.…”
Section: Restatement Of the Main Theorem In Terms Of Multivariable Al...mentioning
confidence: 99%
See 4 more Smart Citations
“…Remark We are using the convention prefixdeg0=$\deg 0=\infty$. The proof of [6, Theorem 5.18] assumes δ0(C)$\delta _0(C)$ is finite, but the result is also true for δ0(C)=$\delta _0(C)=\infty$ because δ0(C)badbreak=F1()H1false(U,u0;R0false)goodbreak=0F1()H1false(U,u0;double-struckZΓ0false)goodbreak=0ΔCmultigoodbreak=0.$$\begin{equation*} \delta _0(C)=\infty \Leftrightarrow F_1{\left(H_1(U,u_0;R_0)\right)}=0 \Leftrightarrow F_1{\left(H_1(U,u_0;\mathbb {Z}\Gamma _0)\right)}=0\Leftrightarrow \Delta _C^{\operatorname{multi}}=0. \end{equation*}$$In this list of equivalences, we have used that the projection GΓ0$G\twoheadrightarrow \Gamma _0$ is the abelianization morphism and that R 0 is flat as a double-struckZΓ0$\mathbb {Z}\Gamma _0$‐module.…”
Section: Restatement Of the Main Theorem In Terms Of Multivariable Al...mentioning
confidence: 99%
“…Let V1(U)$\mathcal {V}_1(U)$ be the first homology jump loci of U , namely, V1(U)badbreak={ρHomfalse(G,Cfalse)H1false(U,Cρfalse)0},$$\begin{equation*} \mathcal {V}_1(U)=\lbrace \rho \in \mathrm{Hom}(G,\mathbb {C}^*)\mid H_1(U,\mathbb {C}_\rho )\ne 0\rbrace , \end{equation*}$$where double-struckCρ$\mathbb {C}_\rho$ is the rank one C$\mathbb {C}$‐local system on U induced by ρ. By [6, Remark 5.14], one has the following: V1(U)badbreak=false(Cfalse)s0.33emall the codimension0.33em10.33emminors of0.33emB(0)0.33emare 0.$$\begin{equation*} \mathcal {V}_1(U)=(\mathbb {C}^*)^s\Leftrightarrow \text{ all the codimension }1\text{ minors of }B(0)\text{ are 0}. \end{equation*}$$This last condition is equivalent to the rank of the left scriptK0$\mathcal {K}_0$‐module generated by the rows of B (0) being strictly smaller than m1$m-1$, which by Remark 2.3 is equivalent to δ0(C)=$\delta _0(C)=\infty$.…”
Section: Restatement Of the Main Theorem In Terms Of Multivariable Al...mentioning
confidence: 99%
See 3 more Smart Citations