Abstract-A feasible simulator, of which formulation and mechanism should be simple and time saving, is developed in this paper to overcome the difficulties of prediction on the EM scattering from threedimensional (3-D) electrically very large ship-sea models. The work in this paper is twofold. First, the sea surfaces are supposed to be a combination of many locally-tilted slightly rough facets with two-scale profiles. The radar return from each local facet is associated to a semideterministic scheme which is established by combining the geometric optics limit of Kirchhoff Approximation (KA-GO) with the Bragg components of Bass-Fuks' two-scale model (BFTSM). Furthermore, we associate the complex reflective function of the respective facet by a so-called Phase-modified Facet Model (PMFM), in which the facet's phase is treated approximately as a combination of inherent part that follows a homogeneous random distribution and coherent part associated with the relative path-delay. Second, in companion with the semi-deterministic treatment of the sea scattering model, a hybrid approximate algorithm is proposed to deal with the composite scattering of electrically large ship-sea model, which is entirely evolved through facets (for the sea surface) and wedges (for the ship target). The method of equivalent currents (MEC) and a hybrid frame which combines the four path model (FPM) with the quasi-image method (QIM) are employed to calculate the scattering characteristics of the ship-like target and ship-sea interactions, respectively. The entire simulator is of comparatively significant computational efficiency, and suitable for providing a preliminary prediction on the instantaneous complex reflective functions and normalized radar cross sections (NRCS) mean levels for electrically very large ship-sea model.