In the last few years, cancer chemotherapy has been successfully employed in the treatment of different types of human tumours. Unfortunately, the optimal clinical usefulness of this important treatment modality is usually limited secondary to the development of life-threatening multiple organ toxicity. Cancer chemotherapy may cause these toxic effects by mechanisms not involved in their anticancer activity that can severely affect the life of patients and represent a direct cause of death. Several experimental and clinical studies have demonstrated that some important anticancer drugs interfere with the absorption, synthesis, and excretion of carnitine in non-tumour tissues, resulting in a secondary carnitine deficiency which is reversed by carnitine treatment without affecting anticancer therapeutic efficacy. Prototypes of anticancer drugs that alter carnitine system are doxorubicin, cisplatin, carboplatin, oxaliplatin, cyclophosphamide and ifosfamide. Furthermore, cachectic cancer patients are especially at risk for carnitine deficiency due to decreased oral intake and/or increased renal losses. Altered serum and urine carnitine levels have been reported in cancer patients with various forms of malignant diseases. Recent studies in our laboratory have demonstrated that carnitine deficiency constitute a risk factor and should be viewed as a mechanism during development of oxazaphosphorines-induced cardiotoxicity in rats. Similarly, inhibition of gene expression of heart fatty acid-binding protein and organic cation/carnitine transporter in doxorubicin cardiomyopathic rat model has been reported. In view of these facts and in view of irreplaceability of these important anticancer drugs, this review aimed to highlight the role of carnitine depletion and supplementation during development of chemotherapy-induced multiple organ toxicity.