2014
DOI: 10.1063/1.4899129
|View full text |Cite
|
Sign up to set email alerts
|

High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

Abstract: High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm−2 sr−1 are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
5
0
2

Year Published

2015
2015
2018
2018

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 10 publications
(7 citation statements)
references
References 23 publications
(19 reference statements)
0
5
0
2
Order By: Relevance
“…1060 nm波段光子晶体激光器 [41] , 连续输出功率1.9 W, 垂直远场发散角14°, 亮度72 MW/cm 2 /sr; 宽条长腔长最 大输出功率9.5 W(条宽100 µm, 腔长3 mm). 最近2016 年, 德国柏林工业大学对1064 nm光子晶体激光器的 转换效率进行了研究 [42] , 通过理论和实验证实: 减少 光子晶体激光器的串联电阻, 可以有效增加转换效率.…”
Section: 年 德国柏林工业大学和Fbh公司成功研制了unclassified
“…1060 nm波段光子晶体激光器 [41] , 连续输出功率1.9 W, 垂直远场发散角14°, 亮度72 MW/cm 2 /sr; 宽条长腔长最 大输出功率9.5 W(条宽100 µm, 腔长3 mm). 最近2016 年, 德国柏林工业大学对1064 nm光子晶体激光器的 转换效率进行了研究 [42] , 通过理论和实验证实: 减少 光子晶体激光器的串联电阻, 可以有效增加转换效率.…”
Section: 年 德国柏林工业大学和Fbh公司成功研制了unclassified
“…宽0.3 nm [42] ; 韩国Gwangju科学院和加拿大国立研究 院研制的1.55 μm三阶和二阶光栅DFB, 单纵模功率 为15 mW [43,44] ; [45] ; 设计并研制出940 nm二阶光栅DFB半导体激 光器, 连续输出101 mW、光谱线宽90 pm、远场发散 角为2.7°和7.3°、边模抑制比20 dB [46] . 24] 2003 横向5.5°~6° [ 26] 2005 横向9.7°~10.7°, 连续1.8 W, 脉冲10 W [27] 2008 横向4°~5°, 侧向3.5°, 连续1.3 W [28] 2010 横向6°, 侧向5°, 连续2.2 W, 光参量积0.47 mm mrad [29] 2014 中国科学院半导体研究所 横向10.5°, 200 μm条宽连续输出功率5.75 W [30] 1060 2014 柏林工业大学 横向15°, 侧向9°, 峰值功率3 W [31] 2015 横向15°, 侧向11°, 6 μm条宽、2.64 mm腔长, 连续1.8 W [32] 2016 M 2 =1.55, 9 μm条宽功率1.9 W [33] 808 2015 中 国 科 学 院长春 光 学 精 密 机械与物理研究所 横向4.91°, 4 mm腔长连续4.6 W [34] 可连续输出几十瓦至数百瓦功率, 主流结构为条宽 出300 W功率 [50] . 北京凯普林通过空间叠加激光单管 和偏振合束, 200 μm/0.22光纤输出600 W [51] .…”
Section: 横向模式控制研究进展unclassified
“…The internal loss is larger than the values (<1 cm −1 ) of general wafers for high-power lasers and can be reduced by optimizing the doping density in the PC. 17) The angled gain stripe and aHSGs were fabricated using standard photolithography and inductively coupled plasma etching. Then a 250-nm-thick SiO 2 insulation layer was deposited on the wafer and a contact window was formed on the gain stripe.…”
mentioning
confidence: 99%