2012
DOI: 10.1103/physrevlett.108.153002
|View full text |Cite
|
Sign up to set email alerts
|

High-Accuracy Measurement of Atomic Polarizability in an Optical Lattice Clock

Abstract: Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (such as blackbody rad… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

10
74
0
2

Year Published

2012
2012
2023
2023

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 122 publications
(89 citation statements)
references
References 33 publications
(52 reference statements)
10
74
0
2
Order By: Relevance
“…The black body radiation (BBR) emitted by bodies at temper ature T 0 K ≠ surrounding the atomic cloud induces a systematic Stark shift of the clock transition frequency according to [41] …”
Section: Black-body Radiation Shiftmentioning
confidence: 99%
“…The black body radiation (BBR) emitted by bodies at temper ature T 0 K ≠ surrounding the atomic cloud induces a systematic Stark shift of the clock transition frequency according to [41] …”
Section: Black-body Radiation Shiftmentioning
confidence: 99%
“…For example, one of the largest contributions to the uncertainty budget of atomic clocks is the uncertainty in the blackbody radiation (BBR) shift [2,12]. The BBR shift is calculated from the difference in the electric-dipole polarizabilities between the clock states [13], and its accuracy is currently limited by uncertainty in atomic transition matrix elements.…”
mentioning
confidence: 99%
“…Precise knowledge of atomic transition strengths is important in many current areas of research, including the development of ultra-precise atomic clocks [1][2][3], studies of fundamental symmetries [4,5] and degenerate quantum gases [6], quantum information [7,8], plasma physics [9], and astrophysics [10,11]. For example, one of the largest contributions to the uncertainty budget of atomic clocks is the uncertainty in the blackbody radiation (BBR) shift [2,12].…”
mentioning
confidence: 99%
“…Une approche très prudente que nous avions adoptée dans [39], et qui est reproduite dans le tableau 2, consiste à considérer que l'incertitude est égale à la valeur calculée. Lorsqu'on examine l'historique de ce type de calcul et son niveau d'accord avec l'expérience pour d'autres atomes [18,19,42], on peut estimer qu'une incertitude réelle est plutôt égale à 10 % de la valeur, ce qui correspondrait à 1,6 × 10 −17 . Enfin, nous avons mesuré le déplacement lumineux lié au piégeage par le réseau pour un ensemble de valeur de la profondeur et de la longueur d'onde du piège.…”
Section: Mesures Absolues De La Fréquence Et Valeur Recommandée Pour unclassified