Although targeting cancer metabolism is a promising therapeutic strategy, clinical success will depend on an accurate diagnostic identification of tumor subtypes with specific metabolic requirements. Through broad metabolite profiling, we successfully identified three highly distinct metabolic subtypes in pancreatic ductal adenocarcinoma (PDAC). One subtype was defined by reduced proliferative capacity, whereas the other two subtypes (glycolytic and lipogenic) showed distinct metabolite levels associated with glycolysis, lipogenesis, and redox pathways, confirmed at the transcriptional level. The glycolytic and lipogenic subtypes showed striking differences in glucose and glutamine utilization, as well as mitochondrial function, and corresponded to differences in cell sensitivity to inhibitors of glycolysis, glutamine metabolism, lipid synthesis, and redox balance. In PDAC clinical samples, the lipogenic subtype associated with the epithelial (classical) subtype, whereas the glycolytic subtype strongly associated with the mesenchymal (QM-PDA) subtype, suggesting functional relevance in disease progression. Pharmacogenomic screening of an additional ∼200 non-PDAC cell lines validated the association between mesenchymal status and metabolic drug response in other tumor indications. Our findings highlight the utility of broad metabolite profiling to predict sensitivity of tumors to a variety of metabolic inhibitors.metabolite profiling | metabolic subtypes in PDAC | glycolysis | lipid synthesis | biomarkers for metabolic inhibitors M etabolic reprogramming during tumorigenesis is an essential process in nearly all cancer cells. Tumors share a common phenotype of uncontrolled cell proliferation and must efficiently generate the energy and macromolecules required for cellular growth. The first example of metabolic reprogramming was discovered more than 80 y ago by Otto Warburg: tumor cells can shift from oxidative to fermentative metabolism in the course of oncogenesis (1). More recently, there has been a resurgence of interest in targeting cancer metabolism (2-4) because it may not only be effective in inhibiting tumor growth, but may also provide a therapeutic window (5, 6). For example, inactivation of lactate dehydrogenase-A (LDHA), an enzyme that catalyzes the final step of aerobic glycolysis, thereby reducing pyruvate to lactate, decreases tumorigenesis and induces regression of established tumors in mouse models of lung cancer driven by oncogenic KRAS or epidermal growth factor receptor (EGFR) while minimally affecting normal cell function (7). The finding that cancers have altered metabolism has prompted substantial investigation, both preclinically and in clinical trials, of several metabolically targeted agents, including those that elevate reactive oxygen species (ROS) or block glycolysis, lipid synthesis, mitochondrial function, and glutamine synthesis pathways (8).The identification of distinct metabolic reprogramming events or metabolic subtypes in cancer may inform patient selection for investigational...