2016
DOI: 10.1002/anie.201604553
|View full text |Cite
|
Sign up to set email alerts
|

Hierarchical Self‐Assembly of 3D‐Printed Lock‐and‐Key Colloids through Shape Recognition

Abstract: Progress in colloid self-assembly crucially depends on finding preparation methods for anisotropic particles with recognition motifs to facilitate the formation of superstructures. Here, we demonstrate for the first time that direct 3D laser writing can be used to fabricate uniform populations of anisotropic cone-shaped particles that are suitable for self-assembly through shape recognition. The driving force for the self-assembly of the colloidal particles into linear supracolloidal polymers are depletion for… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

1
31
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 36 publications
(33 citation statements)
references
References 39 publications
(37 reference statements)
1
31
0
1
Order By: Relevance
“…[6,7] Amongst the conceivable shapes,b owl or cup-shaped particles are as pecial case that combines an anisotropic shape with an open cavity.O wing to their shape,g old nanocups show multiple plasmon resonances and serve as metallodielectric nanoparticles. [8][9][10][11] Cups demonstrate distinct self-assembly behavior through shape-recognition leading to precise colloidal molecules, [12] 1D self-assemblies, [13] or non-classical packing in colloids crystals. [14] Thec up cavity on the other hand, provides accessible high surface-area giving carbon-based cups exceptional electrochemical performance in supercapacitors.…”
mentioning
confidence: 99%
“…[6,7] Amongst the conceivable shapes,b owl or cup-shaped particles are as pecial case that combines an anisotropic shape with an open cavity.O wing to their shape,g old nanocups show multiple plasmon resonances and serve as metallodielectric nanoparticles. [8][9][10][11] Cups demonstrate distinct self-assembly behavior through shape-recognition leading to precise colloidal molecules, [12] 1D self-assemblies, [13] or non-classical packing in colloids crystals. [14] Thec up cavity on the other hand, provides accessible high surface-area giving carbon-based cups exceptional electrochemical performance in supercapacitors.…”
mentioning
confidence: 99%
“…Many theoretical and also experimental investigations of the key-lock systems at the mesoscale utilized depletion interaction as a thermodynamic driving force to push the keys into the complementary locks. [9][10][11][12][13][14] Briefly, adding a non-adsorbing polymer to a solution of colloidal hard spheres induces an effective depletion layer on the surface of the particles. The reason for this is the loss of configurational entropy of the polymer in the region near the surface.…”
Section: Key and Lock Interactionmentioning
confidence: 99%
“…In general, at the mesoscale, lock particles are prepared via 2D and 3D lithography, [8][9][10][11] controlled shell buckling of polymerized silicon oil droplets without templates, 12,13 or growth on template particles. 14,15 Beside various possible interparticle forces, e.g.…”
Section: Introductionmentioning
confidence: 99%
“…GAT TGT GAT TGT GAT TGT TTT TTT TTT TGG GTA ACG CAA CTC TGG core-87-34 GAT TGT GAT TGT GAT TGT TTT TTT TTT CAA AAT CGA ACG TGT ACT core-101-8 GAT TGT GAT TGT GAT TGT TTT TTT TTT TAT ACA AGG CGT TAA CCC core-86-2 GAT TGT GAT TGT GAT TGT TTT TTT TTT CAT TTT TGA CCG GAA TTT TCA GAG GTT T core-94-14 GAT TGT GAT TGT GAT TGT TTT TTT TTT TGA GAG TGG TAG CTG GGA TCG ATA TTC G core-81-28 GATTGT GAT TGT GAT TGT TTT TTT TTT TGC CTA AGC ATT AAG TCA core-88-46 GAT TGT GAT TGT GAT TGT TTT TTT TTT TTT TGC GTA AAG CTA ATT AAG CAT core-95-63 GAT TGT GAT TGT GAT TGT TTT TTT TTT AAG AAA CAC TTA AAT CCT TTG CCC core-83-30 ATT ACT GCA AGT GCA AAT TTT TTT TTT TCG GCC ATG ATT GCG AAT core-98-25 ATT ACT GCA AGT GCA AAT TTT TTT TTT CGA GCT CAG GGT TTT GA core-90-11 ATT ACT GCA AGT GCA AAT TTT TTT TTT GAG TAA TGG ATA AAT TAA core-103-10 ATT ACT GCA AGT GCA AAT TTT TTT TTT TGG TTT GGA CAA AGT TT core-97-4 ATT ACT GCA AGT GCA AAT TTT TTT TTT ACG CGC CTA CCG ACA TGG core-104-62 ATT ACT GCA AGT GCA AAT TTT TTT TTT TGA GGG GCA CCG TG core-91-18 ATT ACT GCA AGT GCA AAT TTT TTT TTT AAG AAA TAT ACT TCA GGT core-82-31 ATT ACT GCA AGT GCA AAT TTT TTT TTT ATA AAT CGA ATC GTA GAC TGG AAA AAC CTA A core-105-51 CAG TAT CAG TAT CAG TAT TTT TTT TTT TAT GTA ATT TAT CAG ACG CTG TGT A core-96-27 CAG TAT CAG TAT CAG TAT TTT TTT TTT AAA GCC TTC GTA ATT CA core-93-20 CAG TAT CAG TAT CAG TAT TTT TTT TTT TTG TTT GAG AAG GAG GAA core-85-32 CAG TAT CAG TAT CAG TAT TTT TTT TTT CAC CGC CTC CGA AAC GAC core-102-21 CAG TAT CAG TAT CAG TAT TTT TTT TTT CAT TCA GCG ACA GTC TTA core-99-6 CAG TAT CAG TAT CAG TAT TTT TTT TTT ATT TTC GCT CAA CAC AGA core-92-12 CAG TAT CAG TAT CAG TAT TTT TTT TTT CCG TTC TGA GAA AGT GAC AAC AGG TG core-84-1 CAG TAT CAG TAT CAG TAT TTT TTT TTT CGC GTT TAT TAT AGT AG core-122-77 TGG ACT TAT ACT TGG ACT TAT TTT TTT TTT ACT ATC AAA AAT AGT GTT core-113-35 TGG ACT TAT ACT TGG ACT TAT TTT TTT TTT AGT ACC GAT AAG TAT CAG AAG AAT GAC C core-109-65 TGG ACT TAT ACT TGG ACT TAT TTT TTT TTT GAT ATT CTG AAC GGG GGC CTC GCC core-110-45 TGG ACT TAT ACT TGG ACT TAT TTT TTT TTT TAG TAA ATT TCA ACA AAG core-108-61 TGG ACT TAT ACT TGG ACT TAT TTT TTT TTT ACA CTA ACG GAG ATT AAA core-111-51 TGG ACT TAT ACT TGG ACT TAT TTT TTT TTT GTC GCT GCC GAC AAG CCG GAG AAT GCC T…”
mentioning
confidence: 99%