2020
DOI: 10.1039/d0ra04432f
|View full text |Cite
|
Sign up to set email alerts
|

Heteroatom-doped graphene as sensing materials: a mini review

Abstract: Graphene is one of the astounding recent advancements in current science and one of the most encouraging materials for application in cutting-edge electronic gadgets.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
35
0
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 92 publications
(37 citation statements)
references
References 185 publications
0
35
0
2
Order By: Relevance
“…Heteroatom-doped graphenes are excellent candidates for gas sensors [ 195 ]. The investigation of other types of graphenes showed interesting results and reflect the potential of these materials for ammonia detection.…”
Section: Gas Sensors Based On Graphene Graphene Oxide and Relatementioning
confidence: 99%
“…Heteroatom-doped graphenes are excellent candidates for gas sensors [ 195 ]. The investigation of other types of graphenes showed interesting results and reflect the potential of these materials for ammonia detection.…”
Section: Gas Sensors Based On Graphene Graphene Oxide and Relatementioning
confidence: 99%
“…Carbonaceous nanographites and amorphous carbon that are present after carbon nanomaterial syntheses exhibit defects and dangling bonds in a considerably high amount, thus enabling greater electrochemical activity [20]. Carbon nanomaterials doped with heteroatoms have become an attractive catalytic material for non-enzymatic electrochemical sensors [21]. Nitrogen, boron, phosphorus, or sulfur can be doped into the carbon lattice, generating either p-type (electron acceptor) or n-type (electron donor) doping.…”
Section: Electrocatalytic Sites and Mechanismsmentioning
confidence: 99%
“…排放会带来严重的环境问题,甚至危害人体的健康 [1][2] 。这样的有害气体,常需气体传感器对其实时检 测 [3][4][5] 。由于气体的固体传感器稳定性好、探测灵敏 度高、 成本低、 体积小、 便携带, 因而应用前景广阔。 但目前已经发现的诸如光纤 [6,7] 、 半导体 [8][9][10] 、 金属有 机框架(MOFs) [11] 和纳米材料 [12][13][14][15] 等新型材料虽能 有效检测有害气体,但检测灵敏度仍不能满足需要, 尤其是不耐检测如 NO 等腐蚀性气体分子。 石墨烯是一种以 sp 2 杂化连接的碳原子紧密堆 积而成的单层二维蜂窝状晶格结构,具有优异的光 学、 电学以及力学性能 [16][17] ,在 材料学、 微纳加工、 能源、生物医学和药物传递等应用领域倍受关注 [18][19][20][21] 。石墨烯由于具有上述优异的电学性能而被认为 可作为高灵敏性气体传感材料。首先,石墨烯具有 高达 2630 m 2 g -1 的理论比表面积,而且单层石墨烯 上的 C 皆为表面原子, 理论上有助于吸附气体分子, 因为石墨烯的比表面积巨大有利于大量气体分子接 触 [22] ;其次,石墨烯与吸附物之间的相互作用可从 弱范德华力向强共价键转变,进而提高石墨烯载流 子的浓度使其易于探测;石墨烯载流子在其狄拉克 点附近的静止能量为零,在室温下拥有极高的载流 子迁移率、极低的电阻率 [23][24] 和较低的电噪,使其 能够屏蔽较多的电荷波动,因此少量的额外载流子 改变就可以引起石墨烯电导率产生显著的变化 [25][26] ; 此外,石墨烯的 C-C 键由 sp 2 杂化形成,结合力较 强,因而其片层具有优异的力学性能和较高的稳定 性,是探测腐蚀性气体传感器的关键要素 [27][28] 。另 外,随着技术的发展,石墨烯的制备工艺日趋成熟 [29] ,尤其是喷墨打印等湿法技术的应用,可将氧化 石墨烯(RGO)片直接组装成超薄传感层,从而简 化了传感器的制造 [30][31][32] 。这些特点使得石墨烯成为 最具潜力的气体传感材料之一。 虽然石墨烯作为气体传感材料的研究起步较早 [33][34][35][36][37] ,甚至现已进一步探索研究到了相关器件的制 作 [38] ,但研究发现,石墨烯对气体分子的吸附作用 并不强,并不利于高灵敏地探测气体分子 [39] 。近年 来有研究发现,通过杂原子掺杂改性可有效提升其 对某些特定气体分子的吸附性能 [40][41][42] , 但对提高 NO 吸附能力却仍未找到合适的掺杂元素。非金属元...…”
Section: 一氧化氮(No)是主要大气污染物之一,过量unclassified