2019
DOI: 10.1101/591180
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Heroin Type, Injecting Behavior, and HIV Transmission. A Simulation Model of HIV Incidence and Prevalence

Abstract: Background and Aims. Using mathematical modeling to illustrate and predict how different heroin source-forms: "black tar" (BTH) and powder heroin (PH) can affect HIV transmission in the context of contrasting injecting practices. By quantifying HIV risk by these two heroin source-types we show how each affects the incidence and prevalence of HIV over time. From 1997 to 2010 PH reaching the United States was manufactured overwhelmingly by Colombian suppliers and distributed in the eastern states of the United S… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 37 publications
0
1
0
Order By: Relevance
“…Ciccarone and Bourgois [53] present a hypothesis that cold water heroin solutions may have fostered HIV transmission in the early phases of the epidemic in the USA. More recently, a model of HIV transmission examining heroin source-type (including cold water prepared solutions) supports this prior hypothesis [54]. Gaskin et al [55] present one of the few studies with a HCV transmission remit to detail water source.…”
Section: Discussionmentioning
confidence: 87%
“…Ciccarone and Bourgois [53] present a hypothesis that cold water heroin solutions may have fostered HIV transmission in the early phases of the epidemic in the USA. More recently, a model of HIV transmission examining heroin source-type (including cold water prepared solutions) supports this prior hypothesis [54]. Gaskin et al [55] present one of the few studies with a HCV transmission remit to detail water source.…”
Section: Discussionmentioning
confidence: 87%