2018
DOI: 10.1002/advs.201800598
|View full text |Cite
|
Sign up to set email alerts
|

Heavy Doping by Bromine to Improve the Thermoelectric Properties of n‐type Polycrystalline SnSe

Abstract: Single crystal tin selenide (SnSe) has attracted much attention for its excellent thermoelectric performance. However, polycrystalline SnSe exhibits unsatisfactory figure‐of‐merit due to the inferior electrical properties, especially for n‐type SnSe. In this work, a high concentration of Br doping (6–12 atm%) on the Se site effectively increases the Hall carrier concentration from 1.6 × 1017 cm−3 (p‐type) in undoped SnSe to 1.3 × 1019 cm−3 (n‐type) in Br‐doped SnSe0.88Br0.12, leading to an increased electrical… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
30
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 60 publications
(31 citation statements)
references
References 29 publications
1
30
0
Order By: Relevance
“…Among the state‐of‐the‐art thermoelectric materials, tin selenide (SnSe) is one of the most promising candidates to apply to thermoelectric devices due to its environmentally friendly feature, high cost‐effectiveness, and outstanding thermoelectric performance derived from its appropriate bandgap of ≈0.9 eV and intrinsic low κ l 9,10 . Figure a shows the development timeline for all SnSe‐based bulk thermoelectric materials,11–124 from which a record high ZT of ≈2.8 at 773 K was found in the n‐type SnSe single crystal,11 derived from its ultralow κ l of ≈0.18 W m −1 K −1 and high S 2 σ of ≈9.0 µW cm −1 K −2 at this temperature 125. Such a high ZT is also very competitive to other state‐of‐the‐art thermoelectric systems which possess ZTs > 2, such as PbTe,126–134 GeTe,135–147 Cu 2 Se/Cu 2 S,148–157 and AgSbTe 2 158.…”
Section: Introductionmentioning
confidence: 97%
See 1 more Smart Citation
“…Among the state‐of‐the‐art thermoelectric materials, tin selenide (SnSe) is one of the most promising candidates to apply to thermoelectric devices due to its environmentally friendly feature, high cost‐effectiveness, and outstanding thermoelectric performance derived from its appropriate bandgap of ≈0.9 eV and intrinsic low κ l 9,10 . Figure a shows the development timeline for all SnSe‐based bulk thermoelectric materials,11–124 from which a record high ZT of ≈2.8 at 773 K was found in the n‐type SnSe single crystal,11 derived from its ultralow κ l of ≈0.18 W m −1 K −1 and high S 2 σ of ≈9.0 µW cm −1 K −2 at this temperature 125. Such a high ZT is also very competitive to other state‐of‐the‐art thermoelectric systems which possess ZTs > 2, such as PbTe,126–134 GeTe,135–147 Cu 2 Se/Cu 2 S,148–157 and AgSbTe 2 158.…”
Section: Introductionmentioning
confidence: 97%
“…A summary of ZTs for SnSe‐based thermoelectric materials. a) The timeline for state‐of‐the‐art SnSe bulks thermoelectric materials,11–124,169–182 the performance achieved by solution route are circled by yellow. b) Temperature‐dependent ZT and c) corresponding peak and average ZT values for polycrystalline SnSe through different fabrication techniques 13,16,22,46,58,62,95,99,101.…”
Section: Introductionmentioning
confidence: 99%
“…Research is obtained in the textured SnSe 0.94 Br 0.06 . Although this thermal conductivity is still larger than the reported value of 0.25 Wm -1 K -1 in n-type crystalline SnSe and polycrystalline SnSe bulks [20,42], the increased electrical transport properties lead to a high ZT value of 1.3 at 783 K for the textured SnSe 0.94 Br 0.06 , as shown in Figure 4(b), whose better performance lines in the direction that is parallel to the SPS pressure. In summary, the texturing process increases the ZT value in the cross-layer direction, suggesting the effectiveness of texture modulation on improving the thermoelectric property of n-type SnSe polycrystalline bulks.…”
Section: Researchmentioning
confidence: 62%
“…3(d) and (e). The lattice fringes can be seen clearly from the High-resolution TEM image, the crystal plane spacing between two apparent planes is estimated to be 0.29 nm, which corresponds to the (111) planes of SnSe [26].…”
Section: Resultsmentioning
confidence: 96%