2008
DOI: 10.1016/j.ijheatmasstransfer.2007.11.043
|View full text |Cite
|
Sign up to set email alerts
|

Heat transfer analysis of intermittent grinding processes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
10
0
3

Year Published

2009
2009
2021
2021

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 26 publications
(15 citation statements)
references
References 10 publications
1
10
0
3
Order By: Relevance
“…These algorithms are based on formulas (5.5), (5.19) and (5.37) presented before. Assuming that the workpiece is a VT20 titanium alloy and using the values of the parameters tabulated in Table 1, see references [4,6], we show that the maximum point c + = 0.0072 ε m and that the maximum value of the temperature, reached on the workpiece surface, T max = T 0 +2T (0) (c + , 0) = 1042.23 K. These values agree with the temperature field shown in Fig. 2.…”
Section: Numerical Examplesupporting
confidence: 83%
See 2 more Smart Citations
“…These algorithms are based on formulas (5.5), (5.19) and (5.37) presented before. Assuming that the workpiece is a VT20 titanium alloy and using the values of the parameters tabulated in Table 1, see references [4,6], we show that the maximum point c + = 0.0072 ε m and that the maximum value of the temperature, reached on the workpiece surface, T max = T 0 +2T (0) (c + , 0) = 1042.23 K. These values agree with the temperature field shown in Fig. 2.…”
Section: Numerical Examplesupporting
confidence: 83%
“…For the details of parameter Q s see references [6,8]. That is, the heat flux due to friction is localized exactly on the contact area (an infinitely long strip of width ε) between the wheel and the workpiece.…”
Section: The Steady-state Solutionmentioning
confidence: 99%
See 1 more Smart Citation
“…Also, the heat flux profile entering the workpiece and the action of the coolant are considered in the boundary condition. In [5], this boundary-value problem is transformed into an integral equation that is useful for the numerical evaluation of the heat transfer in intermittent wet grinding [6]. However, in the case of dry grinding, this integral equation can be reduced to a two-dimensional integral ( (0) theorem) [7].…”
Section: Introductionmentioning
confidence: 99%
“…Inconel718 合金零件所占的重量比在 CF6 发动机中 占 34%,CY2000 发动机中占 56%,PW4000 发动机 中占 57% [2] 。Inconel718 主要应用于燃气涡轮发动 机的涡轮盘及压气机 4~9 级叶片,工作温度为 550~650 ℃ [2] 。Inconel718 叶片的最终加工工艺通 常为磨削,而磨削往往会在表面形成较大的残余拉 应力,因此会大幅降低零件的工作服役性能,尤其 是疲劳强度和寿命 [3][4] 。根据国内外一般的零件抗疲 劳性能要求,零件最终磨削残余应力在一定深度范 围内应具有较小的值(-100 MPa~100 MPa), 且表面 最好是压应力 [5][6] 。 国内外研究学者近几十年来针对磨削过程进行 了较深入的研究,包括磨削过程及残余应力的有限元 仿真和试验分析。陈仁海等 [7] 和胡忠辉等 [8] 团队的研 究成果均表明磨削残余应力是机械作用、热作用和相 变综合作用的结果。王西彬等 [9][10] 、田欣利等 [11][12][13][14] 对 陶瓷材料磨削进行了系统深入的研究。陶瓷材料属于 硬脆性材料,虽然其磨削性能与高温合金不同,但是 仍有借鉴意义。研究结果表明磨削力产生残余压应 力,而磨削温度是引起表面残余拉应力的最主要因 素。康仁科和任敬心团队 [15][16][17][18] 、李晓天等 [19] 对高温合 金及超高硬度材料的磨削研究发现,残余拉应力与磨 削力影响不十分明显,主要与热作用表面烧伤有关。 国外学者 [20][21][22][23] 的研究也认为,磨削表面残余应力是由 磨削力、热作用和相变综合形成,并且磨削区的高温 以及高温度梯度是形成残余拉应力的主要因素。 针对磨削区表面的过高温度这一问题,目前所 使用的大多数方法都是通过采用较小的磨削用量、 采用冷却介质等来降低磨削区温度 [24][25][26][27] 。这种做法 会降低生产效率,且冷却介质如果不能有效降低温 度,零件表面仍然不能保证 100%的残余压应力分 布,仍需要进行后续喷丸等工艺处理。而对工件磨 削表面的喷丸处理通常会破坏工件表面,引起工件 变形,增加零件加工时间以及成本,极大地影响生 产效率 [28][29] 。 本文从降低磨削温度梯度这一想法出发,提出 一种基于强化感应加热工艺辅助磨削的复合工艺, 并在前期研究了感应加热工艺的建模和工艺参数对 加热温度的影响 [30][31][32] …”
unclassified