2019
DOI: 10.1016/j.chemosphere.2018.11.038
|View full text |Cite
|
Sign up to set email alerts
|

Heat stress upregulates G-T mismatch binding activities in zebrafish (Danio rerio) embryos preexposed and nonexposed to a sublethal level of cadmium (Cd)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

1
0
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(1 citation statement)
references
References 45 publications
1
0
0
Order By: Relevance
“…This response was also observed at the transcriptional level, with the up-regulation of GPx genes in several tissues of teleost fish under thermal stress, including black porgy (Acanthopagrus schlegeli) [57] and pufferfish [58], as well as in red cusk-eel eggs under thermal stress [23], where gpx1 was increased, an effect not observed for this species in skeletal muscle [24]. Additionally, the effect of high-temperature stress on the liver related to DNA damage was also observed at the transcriptional level, with the up-regulation of genes involved in DNA mismatch repair (msh2 and msh3), concordant with the previously reported effect of thermal stress on zebrafish (Danio rerio) [59] and American lobster [60]. However, the thermal stress response associated with oxidative stress in teleost fish could vary according to species and tissues, as observed in sheepshead minnow (Cyprinodon variegatus), where a limited effect on antioxidant enzymes and no lipid peroxidation were present [61], in contrast to the variable lipid peroxidation observed in Senegalese sole [55].…”
Section: Oxidative Stress Under High-temperature Stresssupporting
confidence: 87%
“…This response was also observed at the transcriptional level, with the up-regulation of GPx genes in several tissues of teleost fish under thermal stress, including black porgy (Acanthopagrus schlegeli) [57] and pufferfish [58], as well as in red cusk-eel eggs under thermal stress [23], where gpx1 was increased, an effect not observed for this species in skeletal muscle [24]. Additionally, the effect of high-temperature stress on the liver related to DNA damage was also observed at the transcriptional level, with the up-regulation of genes involved in DNA mismatch repair (msh2 and msh3), concordant with the previously reported effect of thermal stress on zebrafish (Danio rerio) [59] and American lobster [60]. However, the thermal stress response associated with oxidative stress in teleost fish could vary according to species and tissues, as observed in sheepshead minnow (Cyprinodon variegatus), where a limited effect on antioxidant enzymes and no lipid peroxidation were present [61], in contrast to the variable lipid peroxidation observed in Senegalese sole [55].…”
Section: Oxidative Stress Under High-temperature Stresssupporting
confidence: 87%